Übersicht Vorlesungswoche 7

Ulrich Görtz

Lineare Algebra 2, SS 21

Erinnerung

Satz über die Jordansche Normalform. $f\colon V\to V$ trigonalisierbar, dann existiert eine Basis $\mathscr B$ von V mit

$$M_{\mathscr{B}}^{\mathscr{B}}(f) = \operatorname{diag}(J_{r_1,\lambda_1},\ldots,J_{r_k,\lambda_k}).$$

Die Jordansche Normalform ist eindeutig bis auf die Reihenfolge der Blöcke

Zerlegung in verallgemeinerte Eigenräume

Die Jordansche Normalform für nilpotente Endomorphismen

Veign:
$$f$$
 my, $d.l.$ $f^{M} = 0$ für $M \ge 1$

$$\sim 0 \text{ as ex. } B \text{ mit } H^{N}_{R}(f) = \left(J_{r,0}, -7, J_{r_{R},0}\right)$$

Beweis des Satzes über die Jordansche Normalform, allgemeiner Fall

Kowsmin: · leslegt on verlly. ER
. wily. Endow.

Die Jordan-Zerlegung

K Kouh

 $A \in \Pi_{-}(K)$ trigonalvier =) to ex D, N $\in \Pi_{-}(K)$ nut

· A = D + N Mipotent, disqualmones

 $\mathcal{D}\mathcal{N} = \mathcal{N}\mathcal{D}$

und D, N end bestimut.

Ausblick

V&k W N°V Tensorpoolly augure Potenz

Nächstes Kapitel: Quotientenvektorraum, Universalkonstruktionen

UCV ~ V -> V/U wit Kin U

Ausblick

Nächstes Kapitel: Quotientenvektorraum, Universalkonstruktionen

Wiederholen/anschauen: der Dualraum eines Vektorraums

Die Jordansche Normalform für nilpotente Endomorphismen Vorlesungswoche 7

Ulrich Görtz

Lineare Algebra 2, SS 21

Seien K ein Körper, V ein endlichdimensionaler K-VR, $f: V \to V$ ein nilpotenter Endomorphismus.

Sei
$$u \in V$$
 und $U := \langle u, f(u), f^2(u), \ldots \rangle$.

Beweisen Sie:
$$\dim(U) = \min\{m \ge 0; f^m(u) = 0\}.$$

Seien K ein Körper, V ein endlichdimensionaler K-VR, $f \colon V \to V$ ein nilpotenter Endomorphismus.

Sei
$$u \in V$$
 und $U := \langle u, f(u), f^2(u), \ldots \rangle$.

Beweisen Sie:
$$\dim(U) = \min\{m \ge 0; \ f^m(u) = 0\} = d$$

• Stien
$$a_{0,-1}, a_{d-1} \in K$$
 wit $a_{0}u + a_{1} \int_{0}^{d-1} (u) = 0$ - Stien $a_{0,-1}, a_{d-1} \in K$ with $a_{1} \neq 0$. Wends were $\int_{0}^{d-1} (u) = 0$ - $\int_{0}^{d-1} (u$

Wor estables
$$a_i \int_{0}^{t+d-t-1} (u) + a_{i+1} \int_{0}^{t+d-t-1} (u) + \dots = 0$$

where $a_i \int_{0}^{t+d-t-1} (u) + a_{i+1} \int_{0}^{t+d-t-1} (u) + \dots = 0$

where $a_i \int_{0}^{t+d-t-1} (u) + a_{i+1} \int_{0}^{t+d-t-1} (u) + \dots = 0$

where $a_i \int_{0}^{t+d-t-1} (u) + a_{i+1} \int_{0}^{t+d-t-1} (u) + \dots = 0$

where $a_i \int_{0}^{t+d-t-1} (u) + a_{i+1} \int_{0}^{t+d-t-1} (u) + \dots = 0$

where $a_i \int_{0}^{t+d-t-1} (u) + a_{i+1} \int_{0}^{t+d-t-1} (u) + \dots = 0$

Seien K ein Körper, V ein endlichdimensionaler K-VR, $f: V \to V$ ein nilpotenter Endomorphismus.

Sei
$$u \in V$$
 und $U := \langle u, f(u), f^2(u), \ldots \rangle$.

Beweisen Sie: Ist
$$u' \in U \setminus f(U)$$
, so gilt $U = \langle u', f(u'), f^2(u'), \dots \rangle$.

Seien K ein Körper, V ein endlichdimensionaler K-VR, $f:V\to V$ ein nilpotenter Endomorphismus.

- · Schreibe u'= au + f(v), ack, vell unt ato wil u'ff(lh).
- Klar \overline{tor} : $U' \subseteq U$, also gre: $mu \setminus m$; $f^{m}(u') = 0$ $f^{m} = 0$ $f^{m}(u) = 0$

Es que
$$\int_{0}^{d} (w) = 0$$
 for dh $u \in U$.

Andrewith in $\int_{0}^{d-1} (u') = \int_{0}^{d-1} (au + J(u)) = a \cdot \int_{0}^{d-1} (u) + \int_{0}^{d} (u) \neq 0$,

also dim $U' \geqslant d = dim U$ and $dem U' = U$.

Die Jordansche Normalform für nilpotente Endomorphismen

Sate Scien K ein Körper, V ein endlichdimensinch K-VR, $f: V \to V$ ein <u>milpotenter</u> Endom.	B = (\(\frac{\xi_{\beta}^{\cdot_{\beta}}\), \(\frac{\xi_{\beta}^{\cdot_{\cio,\cdot_{\cioi_{\cdot_{\cioi_{\cdot_{\cioi_{\cioi_{\cioi_{\cioi\cdot_{\cioi\cioi_{\cioi}\cioi_{\cioi_{\cioi_{\cioi_{\cioi_{\cioi_{\cioi_{\cioi_{\cioi}\cioi_{\cioi_{\cioi_{\cioi_{\cioi\cioi_{\cioii\cioi_{\cioii\cii\cioi_{\cioii\cioi_{\cioii\cioi_{\cioi\cioi_{\cioii\cioi_{\cioi\	Bensolden enn Frolk erbyeder Jersch erm Bol
Dann existiesen & \(\mathbb{N}_{\geq 1}, \)		√
r,,, re≥1 und eme Basis B um V, s.d.	I	
$M_{03}^{KS}(f) = \text{diag}\left(J_{r_1,0}, \ldots, J_{r_k,0}\right)$	1 I	b ₃
1/85 (1/ 2 200)	t ₂ ('')	1
	kar (2) til. (p) ter. (pr	$\int_{\lambda^2-l}(l^3)$ ph

Beweis K Kp., V endland K-VR, J:V -V mysland.

Es genist n rige, der sol V als dordte fimme von j-zyllishe UVR schehe bert (dem als dishlech Mater leinner wir dem enn Jorden Stock rum EWO estudter).

Bures durch Indultum well dim V. IA dim V = 1. Dam V ryllarl

IS $\dim V > 1$. See $U \subseteq V$ ein UVR der Dru. dim(V) - 1 $mr \qquad Im(f) \subseteq U. \qquad (translar, vail <math>f$ will orgality see bew.)

Wearhor in religing $U = U_1 \oplus -- \oplus U_2$ on f-zylloch WR.

Si
$$v \in V \setminus U$$
. Wir shrite $f(v) = \sum_{i=1}^{l} u_i$ with $u_i \in U_i$

The way yellow of the continuous of far alle i of $u_i \notin f(U_i)$
 $u_i = f(u_i')$, $u_i' \in U_i$
 $u_i' \in U_i'$
 $u_i' \in U_i'$

$$W:= \langle v, f(v) \rangle, \quad f^{\mathsf{M}}(v) \rangle \text{ het Dimerion 14+},$$

$$V = W \oplus (U_{2} \oplus --- \oplus U_{\ell}) \qquad \text{[Damit fets), durially } U_{\ell}$$

$$W \cap (U_{2} \oplus --- \oplus U_{\ell}) = 0,$$

$$(\text{dum dim } V = \text{dim } W + \text{dim } (U_{2} \oplus --- \oplus U_{\ell})).$$

$$Si: \quad \omega \in W \cap (U_{2} \oplus --- \oplus U_{\ell}), \quad \text{when } \omega = \sum_{j=0}^{m} \alpha_{0} \int_{0}^{j} (v) \in \bigoplus_{j=1}^{m} U_{j}$$

$$Wil \quad v \notin U, \quad \text{Jul}(f) \subseteq U, \quad \text{mass} \quad \alpha_{0} = 0 \text{ sim.} \qquad \alpha_{0} v + \sum_{j=1}^{m} \alpha_{j} \int_{0}^{j} (v) \int_{0}^{\infty} U_{j} \int_{0}^{\infty} U_$$

Wir hellow genth:
$$\int_{\overline{z}=1}^{\infty} u_{\overline{z}} = \int_{\overline{z}=0}^{\infty} u_{\overline{z}} \int_{\overline{z}=$$

und other $a_n = - = a_m = 0$, wend $u_n = \int_0^{m-1} (u_n) Barrs von ly, notice bu$

Beweis des Satzes über die Jordansche Normalform Vorlesungswoche 7

Ulrich Görtz

Lineare Algebra 2, SS 21

Theorem: Jordansche Normalform

Seien K ein Körpe, V en endlichdimensionaler K-VR

Set f en trigonalisierterer Endomosphismus.

Dann existiern enne Besis & om V, & 31, V,, -, Te >1, l,, -, le EK,

so does $M_{\mathcal{B}}^{\mathcal{B}}(f) = \text{diag}(J_{r_1,\lambda_1}, ---, J_{r_{\mathcal{B}},\lambda_{\mathcal{B}}})$ only.

Jr, L = () |)

Jordan - Blacke

der Größer r

zum EW L

Die JNF vm f ist bis auf die Reihenfolge der

Bloche endeutig bestimmt. (Allerdings ist B mills lind bestimmt, and rem men die Reiher Jolge der Bloche Josiest.)

Zerlegung in verallgemeinerte Eigenräume

Geould: Bass on V, and MB(+) = diag(Jrand, - 7 Jre, la)

Wisson: Sink $\mu_1, -, \mu_5$ der paons. vosil. EW vm J,

dem haber wir der Zulegung

$$V = \widetilde{V}_{p_1} \Theta - \Theta \widetilde{V}_{p_2}$$

Alle Vr. mul f-invavant.

Entstill B derl Ensemmenther or
Base de f-inva. UR Vp:, so whilt for HB(+)
ene Blad-triagonalimetria.

in verly. TR.

- s genist,

jeder Block

enrele in belandele,

de flip

Reduktion auf den nilpotenten Fall

Komer de auchur (inden vir V voter doch ern de voelly. ER), dess of new energy the besitet.

Ham hur f-Lidy nur der EW o, vot alm nilpotent.

Tot B ene Bess on V, od MB (f-lidy) JNF led,

dam let and $H_B^{k}(f) = H_B^{k}(f-\lambda id_v) + H_B^{k}(\lambda \cdot id_v)$ JNF 人· Edin V

Quiz

Überlegen Sie, welche Fragen an dieser Stelle noch offen bleiben.

Wie lässt sich eine Jordanbasis, d.h. eine Basis \mathscr{B} , für die $M_{\mathscr{B}}^{\mathscr{B}}(f)$ JNF hat, konkret berechnen?

Wie verhält sich die JNF beim Auftreten von Rundungs-/Rechenfehlern?

Was kann man im nicht-trigonalisierbaren Fall machen/erhoffen?

Ouiz

Überlegen Sie, welche Fragen an dieser Stelle noch offen bleiben.

$$\mathsf{kv}\left(\left(f-\lambda_i\cdot\mathsf{Id}\right)^{m_i}\right)$$

 $\mathsf{Kw}\left(\left(f - \lambda_i \cdot \mathsf{id}\right)^{\mathsf{m}_i}\right)$ Wie lässt sich eine Jordanbasis, d.h. eine Basis \mathscr{B} , für die $M_{\mathscr{B}}^{\mathscr{B}}(f)$ JNF hat, konkret berechnen? . Zerlegung in wally ER ~ Redultion and unspotenter Fall

• f mlps tent,
$$f^{M}=0$$
, $f^{M-1}\neq 0$: Beginne most Komplement U_{M-1} von Ker (f^{M-1}) in V , $Kr(f^{M})=V$... (Shript, Ergänzung 17-24)

Wie verhält sich die JNF beim Auftreten von Rundungs-/Rechenfehlern?

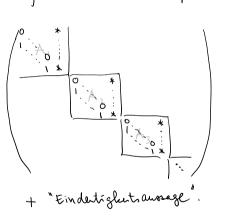
Was kann man im nicht-trigonalisierbaren Fall machen/erhoffen?

~ offenbar in ally. Leave Dreiechsmahiren als Normalform. Ersatn: "Rationale Normalform"

Der Satz über die rationale Normalform

K Körzer. V endlichdimensionaler K-VR, f:V→V en Endomosphismus.

Dam existiest eine Basis B vm V, so dess $M_{R}^{B}(f) = diag(A_{1}, -, A_{e})$ (Bh de - trago nel matur), s.l. jede Matin A; die Begleitmetria eines Polynoms pir, ri>1, Pí E K[X] imduribel, ist.

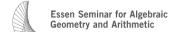


Die pi soud die imd. Teile von cherpoly / minpoly.

Die Jordan-Zerlegung Vorlesungswoche 7

Ulrich Görtz

Lineare Algebra 2, SS 21



Quiz

Folgern Sie aus dem Satz über die Jordansche Normalform:

Seien K ein Körper, $n \in \mathbb{N}$. Ist $A \in M_n(K)$ trigonalisierbar, dann existieren $D, N \in M_n(K)$ mit den folgenden Eigenschaften:

D diagonalisierbar, N nilpotent, A = D + N, DN = ND.

Quiz

Folgern Sie aus dem Satz über die Jordansche Normalform:

Seien K ein Körper, $n \in \mathbb{N}$. Ist $A \in M_n(K)$ trigonalisierbar, dann existieren $D, N \in M_n(K)$ mit den folgenden Eigenschaften:

D diagonalisierbar, N nilpotent, A = D + N, DN = ND.

(1) Fix B in JNF:

$$D = \text{diag} (b_{11,1-1}, b_{nn})$$

$$N = B - D$$

$$\begin{cases} \text{in jeden Black}: \begin{pmatrix} \lambda_{11} \\ \lambda_{22} \end{pmatrix} = \begin{pmatrix} \lambda_{11} \\ \lambda_{22} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix}$$
Setu D:= SD_BS⁻¹, N:= SN_BS⁻¹.

Satz über die Jordan-Zerlegung

Stien Kein Köper, Ven enthildret K-VR.

Set Ist $f:V \rightarrow V$ in togonal restore Endomorphismus, on existing Endomorphisme D, N: $V \rightarrow V$ mit

· D diegondone by, . . N without · J = D+N · DON=NOD.

Asperden and D and N mit doesn Eigenschafter endertig bestrucht

und as environ Polynome p_d , $p_n \in K[X]$ und Absolution o und so des $p_a(f) = D$, $p_n(f) = N$.

Beweis: Existenz

Sien
$$\lambda_1 - \lambda_r$$
 die paen vool EW von j ,

mappel $j = \prod_{i=1}^r (X - \lambda_i)^{m_i}$,

 $V = V_{\lambda_1} \oplus -- \oplus V_{\lambda_r}$ du belyng von V

Ste pl $\in K[X]$ en Polynom with

 $p_{\lambda} \equiv \lambda_i \mod (X - \lambda_i)^{m_i}$, $v_i = 1, ..., r$
 $p_{\lambda} \equiv 0 \mod X$

Voralor legang Wern f even emigen EW I had, minghel = (X-L)m ~ f - l.id, milystat N=f-1.11 D = L·idy $= \left(\begin{array}{c} \downarrow \\ \downarrow \\ \end{array} \right) \left(\begin{array}{c} \downarrow \\ \end{array} \right) \left(\begin{array}{c} \downarrow \\ \end{array} \right) \left(\begin{array}{c} \downarrow \\ \end{array} \right)$

Ein volden Polynom ear wal dem chimoisthe Restrote (and alle lite, so and $(X-L)^{m_1}$, $(X-Lr)^{m_2}$, $(X-Lr)^{m_3}$, $(X-Lr)^{m_4}$, $(X-Lr)^{m_5}$, (X-Dann april $P_d(f|\widetilde{V}_{k_i}) = k_i \cdot id_{\widetilde{V}_{k_i}}$, folyted on $f_i(f)$ diagonalizables. Full $p_n := X - p_\lambda$ got $p_n (f|\tilde{V}_{\lambda_i}) = f|\tilde{V}_{\lambda_i} - \lambda_i \cdot id\tilde{V}_{\lambda_i}$ méthodul, Pn (f) | Vi also in pr(1) mystat.

also it pr(f) wapaire.

D := p(f) die jourbrush, N:= pr(f) which, D+N=f, DoN=NoD

Beweis: Eindeutigkeit

Sien D, N we ober howshout.

D' dia ponelsia bay

N' milpotent much

Bel. $D = D^1$, $N = N^1$.

Justes moder gett

Tetal lobe w

Lege Wirl D' + N' = f and D', N' witerends bounding, bounding sovoll

b' do and N' mit f, also mit eller thementer von K[f].

 $\mathcal{D} \circ \mathcal{D}' = \mathcal{D}' \circ \mathcal{D}, \qquad \mathcal{N} \circ \mathcal{N}' = \mathcal{N}' \circ \mathcal{N}.$

 $\mathcal{D} + \mathcal{N} = \mathcal{J} = \mathcal{D}' + \mathcal{N}', \quad \text{alm}$

 $\mathcal{D}' + \mathcal{N}' = \mathcal{J}, \qquad \mathcal{D}' \circ \mathcal{N}' = \mathcal{N}' \circ \mathcal{D}'.$

$$D-D'=0$$
, $N'-N=0$, also $D=D'$, $N=N'$.

Quiz

Berechnen Sie die Jordan-Zerlegung A=D+N und Polynome p_d , p_n wie im Satz für

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & 0 & 5 \end{pmatrix}$$

Quiz

Berechnen Sie die Jordan-Zerlegung A = D + N und Polynome p_d , p_n wie im Satz für

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & 5 \\ 0 & 1 & 0 \end{pmatrix}$$
wings_A

$$P_{d} = 3 \text{ mod } (X-3)^{2}$$

$$P_{d} = 0 \text{ mod } X$$

$$P_{d} = 0 \text{ mod } X$$

$$N_{d} = -\frac{1}{3}(X-3)^{2} + 3 = -\frac{1}{3}X^{2} + 2X \text{ column.}$$

$$N_{d} = -\frac{1}{3}A^{2} + 2A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

$$P_{\lambda} = 0 \text{ max} X$$

$$N = -\frac{1}{3}A^{2}+2A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

$$N = A - D = \begin{pmatrix} -2 & 0 & 2 \\ 0 & 0 & 0 \\ -2 & 0 & 2 \end{pmatrix}, \quad \forall n = X - \beta \lambda$$

$$= \frac{1}{3}X^{2} - X.$$