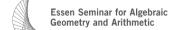
Lineare Abbildungen Übersicht Vorlesungswoche 7

10. Dezember 2020



Erinnerung -- Wo stehen wir?

$$V$$
 ein K -Vektorraum \bigvee , $+: \bigvee_{\times} \bigvee \rightarrow \bigvee$
 $\cdot: \bigvee_{\times} \bigvee \rightarrow \bigvee$

Struktur von V: Jeder endlich erzeugte K-Vektorraum besitzt ein Basis.

Dimension dim V

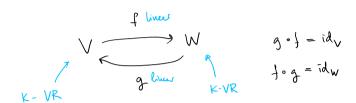
Dimension und Untervektorräume

Lineare Abbildungen

K ein Körper, V, W Vektorräume über K.

Eine Abbildung
$$f: V \rightarrow W$$
 height linear, full of fire alle $v, v' \in V$ gith: $f(v+v') = f(v) + f(v')$ in W . for alle $a \in K$, $v \in V$ gith $f(av) = af(v)$.

Isomorphismen = limer Att f: V - W, and em limer Unhalotte ex



Die Koordinatenabbildung

V en K-VR,
$$(V_{1,-}, V_{n})$$
 en Bass vm V

V \xrightarrow{CB} K"

 $(a_{1,-}, a_{n})^{\dagger}$ En Isomorphismus von VR

 $\sum_{n=1}^{N} a_{n} V_{n}^{\dagger}$ $a_{n} \in K$

Kern und Bild einer <u>linearen</u> Abbildung $\int : V \rightarrow W$

$$\operatorname{Ku}(f) = \{ v \in V, f(v) = 0 \} \subseteq V \quad UVR$$

$$\operatorname{Jm}(f) = \{ f(v), v \in V \} \subseteq W \quad UVR$$

Die Dimensionsformel für lineare Abbildungen

Theorem

Seien V, W Vektorräume über K, sei V endlich-dimensional und sei $f:V\to W$ eine lineare Abbildung. Dann gilt

$$\dim(V) = \dim(\operatorname{\mathsf{Ker}}(f)) + \dim(\operatorname{Im}(f)).$$

Der Dualraum eines Vektorraums

K Körper, V en K-VR

$$V' (= V^*) = Hom_K(V, K)$$

Tung alle brune AH. $V \rightarrow K$,

(in UVR in Alb (V, K))

Lineare Abbildungen Definition und einfache Beispiele Vorlesungswoche 7

7. Dezember 2020

Lineare Abbildungen

Seien K ein Körper und V, W Vektorräume über K.

Det. Eine Abbildung $f: V \rightarrow W$ hight linear (other Vehtmann - the memorphismus), were die folgender Bedingunger erfillt sind:

(a) für alle $v, v' \in V$: f(v+v') = f(v) + f(v'),

(b) für alle $a \in K$, $v \in V$: f(av) = a f(v).

Rem. Let $f:V \to W$ line, so gilt f(0) = 0.

(Wanda (6) as with a = 0 and v = 0.)

Justen: Eine Ald. R - R, 2 h m2+6 (~ Fultim graph of Grade),
ist em linear Abb. om R-VR gener dem, wen 6=0.

Beispiele Sim V, W VR über K.

- · Die Abbildung V W, V HO, 18t liner. "Nullalbildung"
 - . Die Idulitäbeld. V -> V, v -> v, ist liner.

IN UEV en UVR, dem ist die Inhlusionsabbildung. U -> V, u -> u, lineer.

. Sind f: U → V und g: V → W Homomorphismen, so And and die Verluttung g of: U → W en VR-Homomorphismes (Chine Redung)

Em linear Ass. V -> V menut men and Endomorphisms.

$K = \mathbb{Q}, \quad f: \mathbb{Q}^2 \to \mathbb{Q}^2, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 + y^2 \\ x^2 - y^2 \end{pmatrix}. \quad \text{with linear} \quad \begin{cases} f(-1) & f(-1) \\ 0 \end{pmatrix} \\ f(-1) & f(-1) \\ 0 \end{pmatrix}$

$$\mathbb{Q}^3$$
 ,

$$\mathbb{P}^3$$
,

$$\mathbb{Q}^3$$
, $\binom{x}{y} \mapsto \binom{x}{x}$

$$K = \mathbb{Q}, \quad f: \mathbb{Q}^2 \to \mathbb{Q}^3, \quad \binom{x}{y} \mapsto \binom{x+y}{x-y}. \quad \text{limin} \quad \sigma = \binom{\mathbb{Q}}{x \mapsto z^2 + 3x} \in \mathbb{V}$$

$$\mathbb{Q}(x) = (\mathbb{Q} \to \mathbb{R}, x \mapsto 2x + 3)$$

$$\cdot K = \mathbb{R}, \quad V \text{ der Vektorraum der Polynomfunktionen } \mathbb{R} \to \mathbb{R}, \quad D: V \to V, \quad f \mapsto f'.$$

 $K = \begin{cases} \mathbb{R} & \text{,} \quad f: \mathbb{C} \to \mathbb{C}, \quad a+bi \mapsto a-bi \ (a,b \in \mathbb{R}). \end{cases}$ $\downarrow f(i)=1 \quad \text{,} \quad \text{for } \mathbb{R} - VR - \text{Homomorphisms}, \quad \text{,}$ $\downarrow f(i)=-i \neq i \cdot f(i) \quad \text{other less } \mathbb{C} - VR - \text{Homomorphisms}, \quad \text{,}$

$$2 \rightarrow \mathbb{R}$$

$$2 \rightarrow 2^2 + 3$$

$$= (\mathbb{R} \rightarrow 1)$$

ist linear, Alderhnessugele:

(f+g)' = f'+g'm. a.W. D(f+g) = D(f)+ D(g)

 $(af)' = a \cdot f'$

Geometrische Interpretation

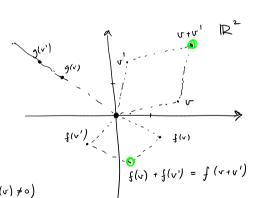
- . 1(0) = 0
- (a) Für jeden Parallelo grenne met Echer O, v, v', v+v' bilder O=f(0), f(v), f(v+v') wieder die y Echer erns Parallelo grennes (mighider wern enterth).
 - o July Visper ups grade (v) (v+0)

 with out eine Us groups grade

 (visited (f(v))) abjectedt (fell f(v) +0)

 with iso doot eine "Street ung".

 $f: V \rightarrow W$ lines: (a) $\forall v, v' : f(v+v') = f(v)+f(v')$ (b) $\forall a \in K, v \in V: f(av) = a f(v)$.



Geometrische Beispiele

• Ist $A \in M_{m \times n}(K)$, so of du Ath. $\mathbf{f}_A : K^n \to K^m$ $\times \mapsto A \times$ lines: • A(x+y) = Ax + Ay $\cdot A \cdot (ax) = a \cdot Ax$

. Sprægelinger av Wisperingsgrader in R², Drehinger im der Wispering var R², Stredninger, Scheringer soud linear Abbildinger R²→ R².

https://math.ug/applets/lineare-abbildungen-1.html

Der Vektorraum $\mathsf{Hom}_{\mathcal{K}}(V,W)$

V, W VR who K

Wir schulon

 $\operatorname{Hrm}_{\mathsf{K}}(\mathsf{V},\mathsf{W}) = \{ f: \mathsf{V} \to \mathsf{W} ; f | \underline{\mathsf{linear}} \; \mathsf{Abb} \}$ $\subseteq \mathsf{Abb}(\mathsf{V},\mathsf{W})$

Dann for Home (V, W) en K-Veltraum

W fige Home(V,W)

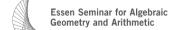
m' Addition $(f+g): V \to W$

belarmet. (af): V -> W

limare Abb.

Isomorphismen Vorlesungswoche 7

8. Dezember 2020



Definition Isomorphismus

K Kogu, V, W Velltonäume über K

Def. Eine lineau Abbildung $f:V\to W$ heißt Isomorphismus, wenn eine breare Abbildung $g:W\to V$, so dess $g\circ f=\mathrm{id}_V$, $f\circ g=\mathrm{id}_W$.

Men nemt g den Underhomomorphismes van f und schrist de μ ir $f^{-1}:W\to V$ (Bern Wenn g existins, so ist g durl f endertig bestimmt, und it eterfalls Issue.)

Spruherisa. · Wir dage, VR V und W seien idomorph, wem ein Isomorphisms V ~ W essithist, V = W

· Ein Isomorphisms V ~ V heißt and Antomorphismus.

Bijektive lineare Abbildungen sind Isomorphismen

f:V -> W ene linear Albildang. Dem and aguivalent: (ii) f ist en bijektive Abbilding (i) f sor Isomophismus es en hun UnderAbg es ex. Unliberable g Kler, den jede Aldridung, die ene Umhehreite. besitet, ist bijeldig.

Bessis

(i)
$$\Rightarrow$$
 (ii) \Rightarrow (ii) Kler, den jede Habridany, die ene Umbehrett. besitet,

(ii) \Rightarrow (ii) Si friettiv und on g die (end. bestimmt.) Umbehrettilding um f.

(ii) \Rightarrow (i) Si f bijettiv und on g die (end. bestimmt.) Umbehrettilding um f.

22: g lineer. Seien $w_1, w_2 \in W$, $v_1 = g(v_1), v_2 = g(v_2)$ (also $w_1 = g(v_1), v_2 = g(v_2)$)

 $g(u_1 + u_2) = g(f(v_1) + f(v_2)) = g(f(v_1 + v_2)) = V_1 + V_2 = g(u_1) + g(w_2)$.

f lineer

Bijektive lineare Abbildungen sind Isomorphismen

About l for
$$a \in K$$
, $w \in W$, $v = g(w)$ (also $w = f(v)$):
 $g(a \cdot w) = g(a \cdot f(v)) = g(f(a \cdot v)) = (g \cdot f)(av) = av = a \cdot g(w)$.

Quiz: Welche der folgenden Abbildungen sind Isomorphismen?

$$K=\mathbb{Q},\ f\colon \mathbb{Q}^2 o \mathbb{Q}^2,\ egin{pmatrix} x\ y\end{pmatrix}\mapsto egin{pmatrix} x+y\ x-y\end{pmatrix}$$
 Id. Isomorphisms

$$K = \mathbb{Q}, f: \mathbb{Q}^3 \to \mathbb{Q}^2, \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ y+z \end{pmatrix}$$
 Kein Issuarphismus $\binom{1}{0} \mapsto \binom{0}{0} \mapsto \binom{0}{0} \longrightarrow \text{with injective}$

$$K$$
 ein Körper, $a \in K$, $f: K \to K$, $x \mapsto ax$ — falls $a = 0$: less Tao marphismus with $a \neq 0$: Tao marphismus $a \mapsto a^{1} \cdot a$.

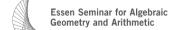
Isomorphismen "transportieren" Vektorraumeigenschaften

Lemme Si f:V -W en Isomoghisms um K-Vehhrrähmen. (1) Ist $(v_i)_{i \in I}$ en Erngendernjohn, dem ist $(f(v_i))_{i \in I}$ en ES vm W. (2) Ist (vi); EI ere linear unabhängge Familie in V, dem 18t (f(vi)) ieI unabl. in W. (3) Ist (Vi)iEI ene Bess von V, dem ist (J(Vi))iEI ene Bess von W. (4) Falls V endlid erunt ish so ist and W endlid erunt whe dim V = dim W. Furth Kler: (1)+(2) \Rightarrow (3) \Rightarrow (4). $\frac{u}{u}$ (1) Set $f^{-1}:W\to V$ die Umherschildung un f, and so $u\in W$.

Schnile $f^{-1}(u)=\sum_{i\in I}a_iv_i$ (we extende $a_i\neq 0$). Dem $u=f(f^{-1}(u))=f(\sum_ia_iv_i)$

Lineare Abbildungen und Basen Vorlesungswoche 7

9. Dezember 2020



Eine lineare Abbildung ist durch die Werte auf Basisvektoren bestimmt

Sate Seien V, W Veltterräume ihr k, sei bi, ..., be ene Beris von V, und seien
$$W_{1,-..}, U_n \in W$$
.

Down existiest genen eine lineare Albeidung $f:V \to W$ so ders for the $i=1,-n$ get $f(bi)=\omega_i$.

Furners Eindutglich Int $v \in V$, ether $v=\sum_{i=1}^{n} a_i b_i$, $a_i \in K$, dem more $f(v)=f\left(\sum_{i=1}^{n} a_i b_i\right)=\sum_{i=1}^{n} a_i f(b_i)=\sum_{i=1}^{n} a_i \omega_i$.

Extract Wir definition for $v=\sum_{i=1}^{n} a_i b_i$: $f(v)=\sum_{i=1}^{n} a_i u_i$

Dies definish en Albildung
$$V \rightarrow W$$
, wil jedes V we endentige Darsdellung als Linearhon-breation der bi hat.

$$b_1 = 0.1 + 0.8_{11} + 0.8_{12} + 0.08_{11}$$

Auforden get for
$$i=1,...,n$$
: $b_i=0.1,t-1...+0...+0...+1...+1...+0...+1...$

dro
$$f(bi) = wi$$
.

bro: $f(bi) = wi$.

bro: $f(bi) = wi$.

See $v = \sum_{i=1}^{n} a_i b_i$, $v' = \sum_{i=1}^{n} a_i' b_i$.

Down git $f(v + v') = f\left(\sum a_i b_i + \sum a_i' b_i\right) = f\left(\sum (a_i + a_i') b_i\right)$

box:
$$f \cap f$$
 lime. See $v = \sum_{i=1}^{n} a_i b_i$, $v' = \sum_{i=1}^{n} a_i' b_i$.

Down git $f(v + v') = f\left(\sum a_i b_i + \sum a_i' b_i\right) = f\left(\sum (a_i + a_i') b_i\right)$

$$= \sum (a_i + a_i') \omega_i = \sum a_i u_i + \sum a_i' \omega_i = f(v) + f(v')$$

Ähmlid: $a \in K$, $v \in V$: $f(av) = a f(v)$.

Down git
$$f(v+v') = f\left(\sum a_i b_i + \sum a_i' b_i\right) = f\left(\sum (a_i + a_i') b_i\right)$$

Quiz: Existiert eine lineare Abbildung so dass ...? ® die g der end bet hunn

① Existiert
$$f:\mathbb{Q}^2 o \mathbb{Q}^2$$
 mit $\qquad \qquad \mathbb{Q}^2$

AUS. Q' - Q', o.l.

 $q(v_1) = \omega, \quad q(v_2) = \omega_2$

Existiert
$$f\colon \mathbb{Q}^2 o \mathbb{Q}^2$$
 mit

$$ightarrow \mathbb{Q}^2$$
 mit

$$= g(V_1) - g(V_2)$$

$$= \binom{1}{1} + \binom{-1}{1}$$

Dann ght
$$g(v_2) = \omega_2$$
, also lame in $f = g$ setter.

Basiswahl als Wahl eines Koordinatensystems

Seien V en K-VR und bij. j.b., eine Bens vn V.

Erhelle Isomorphone

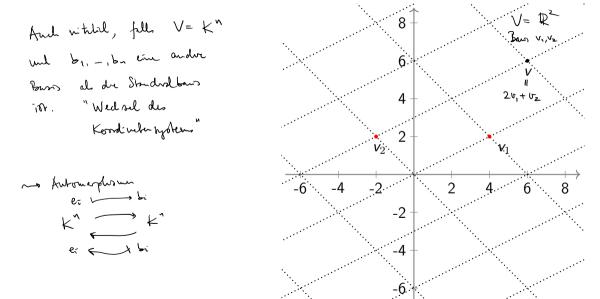
$$k^n \xrightarrow{\sim} V \qquad (a_{i_1 - i_2})^t \mapsto \sum_{i=1}^n a_i b_i$$

$$V \xrightarrow{\sim} K^n$$
 end but linear Abl.

And $b_i \mapsto e_i$, $i=1,-1^n$

(dl, $v=\sum a_ib_i \mapsto (a,-,a_n)^t$ Standalms voltare

Basiswahl als Wahl eines Koordinatensystems



Die Koordinatenabbildung

Sir V en K-VR unt Bars (b1, _ bn) =: B

Dans luft de Journephiones V -> K" nit b: -> e; firelle

 $v = \sum a_i b_i \longrightarrow (a_{n_i} - a_n)^t$

die Korrdnehabbildung um V benigtet der Barrs \mathcal{B} , um adaiten $C:V \to k$

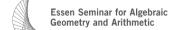
For veV hiper co(v) de Koordinsterseleter von v berejtel de Bars &.

Dimension und Isomorphie

Koroller Seine V, W endlid erufn X-VR. Dan omd åguvalent: (ii) din V = dim W. (i) V = W (i) =) (ii) selv oben. (ii) => (i) See n = din V = du W. See B, & Best vn V, W ~ c_R: V ~ K", c_e: W ~ K" ce · co: V -> W Josumophisms (unt Umhbrhoman. $c_{e}^{-1} \circ c_{e}$).

Kern und Bild Vorlesungswoche 7

9. Dezember 2020



Kern und Bild einer linearen Abbildung

Sei $f \colon V \to W$ eine lineare Abbildung zwischen K-Vektorräumen

Du Kern Ker(f) von
$$f$$
 ist definish als
$$\text{Kur}(f) = \{ v \in V ; \quad f(v) = 0 \} = f^{-1}(\{o\}) \subseteq V$$
 where f is f in f in f is f in f

- · Dame For Ker (f) ∈ V ein Unterrebterraum, und In (f) ∈ W ein UVR.
- Ist $A \in M_{m \times n}(K)$, $f_A : K^n \to K^m$, $\chi \mapsto A\chi$, die nyst. All., so gilt $Kr(f_A) = Kr(A) = \{\chi \in K^n ; An = 0\}$, $Im(f_A) = Im(A)$.

Quiz

Sei
$$K=\mathbb{Q}$$
, $V=\mathbb{Q}^5$, $W=\mathbb{Q}^3$,

$$\mathbb{Q}^{s} \to \mathbb{Q}^{s}$$
 $A \in \Pi_{3 \times 5}(\mathbb{Q})$

mit
$$A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5} x_i \omega_i$$

$$A = \begin{pmatrix} x_1 \\ x_1 \\ x_2 \end{pmatrix} = \sum_{i=1}^{5}$$

Wie würden Sie eine Basis von Ker(f) und wie eine Basis von Im(f) berechnen?

$$K_{r}(f) = K_{r}(A) = Longo mys des del A geg. hand this.$$

Existiert eine lineare Abbildung
$$f: V' \to V$$
 mit $\operatorname{Im}(f) = U$? $f : U \to V$ $f : U \to V$

Existiert eine lineare Abbildung $g\colon V o V'$ mit $\mathsf{Ker}(g)=U?$ $\hat{\emptyset}^\mathtt{a}$

Injektivität ⇔ trivialer Kern

St J:V -> W eine lineare Aldridning wisher K-VR. (a) fist nightive Dam sind aquivalut: (\tilde{u}) Kw(f) = 0 $(\underline{c} V)$ 9 Nullveltorrann

Blocks) (i) \Rightarrow (ii) Well f(0) = 0, gilt $0 \in \ker(f)$, and very our Jujethvität un f beam $\ker(f)$ beam Elemente $\neq 0$ below.

$$\frac{(\bar{u}) =)(i)}{\text{Aus}} \quad \text{Stien} \quad v, v' \in V \quad \text{wit} \quad f(v) = f(v') \,. \quad \text{Wolln regularized}.$$

$$f(v) = f(v') \quad \text{folgst} \qquad f(v - v') = f(v) - f(v') = 0, \quad \text{also} \quad v - v' \in \text{Ku}(f),$$

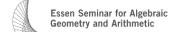
$$d.l. \quad v - v' = 0, \quad \text{also} \quad v = v'.$$

Terminologie: Monomorphismen, Epimorphismen

Eine injeltire linear Abb. $f:V \to W$ nemt man and Monomorphismus.

Die Dimensionsformel für lineare Abbildungen Vorlesungswoche 7

9. Dezember 2020



Die Dimensionsformel für lineare Abbildungen

Sien Ken Korpe, V, W Veldroräume / K. Ser V endtil-dimensional.

Theorem So: f: V -> W ene linear Albilding. Down gilt: Ker(f), Im(f)

 $\dim V = \dim \ker(f) + \dim \operatorname{Im}(f)$

Spredwise Die Zell din (In(f)) went men and den Rang der limerer Alle Mang f, in Zeichen rg (f):= dim (Im(f)).

Peris Si $U \subseteq V$ en Komplemetinnen en $(WR \text{ ker}(f) \subseteq V)$, $d \in V$. $Ker(f) \oplus U = V \cdot \underbrace{\text{Reh}}_{|U} : U \longrightarrow Im(f), u \mapsto f(u),$ ist en Isomorphisms.

Wenn vir drese Behangtmy bevisse konne, dem Jelft der Sati, dem es $\dim U = \dim Jm(f)$. Well U, kv(f) komplementirrämme $\bar{n} V$ and, get and dinker(f) + dim $U = \dim V$. · Wel flu lineer 10t, get, flu bijeltiv.

Burus der Rehamphong

V2 N u = W n Ku(f) = lor, l.c. u=0. 1+ Also get $\ker(f_{|u}) = 0$, also $f_{|u}$ injective. • f_{IU} supelity: See $w \in I_{IU}(f)$. 27: esen well wit $f_{IU}(u) = w$.

• $f_{|u|}$ injective: Fills $u \in U$ wit $f_{|u|}(u) = 0$, dem git Gedufelle ex. $v \in V$ such $f(v) = \omega$ (verl $\omega \in Im(t)$). Schrise v = u' + u, with $u' \in k\omega(f)$, well. Down gith w = f(v') = f(u') + f(u) = f(u) = f(u'). $V = k\omega(f) \oplus U$ the int f(u) subjective. $u' \in k\omega(f)$

Korollar: Homomorphismen zwischen Vektorräumen derselben Dimension

Quiz: Zusammenhang zu linearen Gleichungssystem

Sei $A \in M_{m \times n}(K)$ und $f : K^n \to K^m$ die zugehörige Abbildung $x \mapsto Ax$.

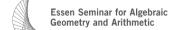
Versuchen Sie, die Dimensionsformel und das Korollar in Termen von Matrizen/linearen Gleichungssystemen zu interpretieren.

In god Fell, de.
$$M=n$$
: $\int bis$ (=) $\int iwsi = 0$ ker(f) = 0 (\Rightarrow) fragility

me hivida Lizz

Der Dualraum eines Vektorraums Vorlesungswoche 7

9. Dezember 2020



Definition: Dualraum

VR aller lineare ARb. V → K

Sei V ein K-Vektorraum.

Det Wir nemmen den
$$K$$
-Veldrerrann $V' := Hom_K(V, K)$ der truelrann om V .

Vellmann strukher and V':

- $(\lambda + p) : V \to K$, $v \mapsto \lambda(v) + p(v)$
- · (al): V -> k, v -> a.l(r)

Die Element in V' neut man and Linearformen.

Off and du Dulaum and nit V* beriebut.

Quiz: Beispiele für Elemente im Dualraum

immu: Nullablilding V > K

Sei $V = K^n$. Finden Sie Elemente im Dualraum V^{\vee} .

Sei
$$V = K^n$$
. Finden Sie Elemente im Dualraum V^{\vee} .

agendut: $K^n \to K$, Mögliddeit: $f_n : K^n \to K$ for $A = M_{1 \times n}(K)$, $A = (a_1 \cdots a_n)$

$$(x_{1,-} x_n)^{t} \longmapsto A \cdot \begin{pmatrix} x_1 \\ x_n \end{pmatrix} = \sum_{i=1}^n a_i x_i$$

Sei $K = \mathbb{R}$, V der Vektorraum aller Polynomfunktion $\mathbb{R} \to \mathbb{R}$. Finden Sie Elemente im Dualraum V^{\vee} .

Dualraum
$$V^{\vee}$$
. $V = \{p : \mathbb{R} \to \mathbb{R} : e_{0} \text{ a. } n \in \mathbb{N}, c_{0}, -c_{n} \in \mathbb{R}, n \text{ i.} \}$

$$\downarrow (x) = \sum_{i=0}^{n} c_{i} x^{i}$$

$$\downarrow V \to \mathbb{R}, \quad p \mapsto p(a) \qquad (a \in \mathbb{R})$$

$$\downarrow V \to \mathbb{R}, \quad p \mapsto \int_{0}^{1} p(x) dx.$$

Die duale Abbildung einer linearen Abbildung

•
$$\lambda \cdot f : V \to K$$
 ist als Verhelbug lawer Abb. sellow liner, als $\lambda \cdot f \in V$.

•
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^$$

λεW^V~

. Das Bilder der duelen Abbildung och verbiglik unt der Verkebtung:

 $f: U \rightarrow V$, $g: V \rightarrow W$ linear Abbilduyen $\longrightarrow g \cdot f: U \rightarrow W$

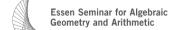
Dawn git $\int_{0}^{\infty} g = (g \circ f)^{\vee}$

(dum g'of' = (fog)' = (idw)' = idw', fog' = idv')

 $3.1 \left(\begin{array}{ccc} M & M \\ \uparrow_2 & \downarrow_2 \\ \uparrow_4 & \downarrow_1 \\ \uparrow_4 & \downarrow_1 \end{array}\right)$ Bers Si LEW. Dame gite $(J_{\alpha}, J_{\alpha})(\gamma) = f_{\alpha}(J_{\alpha}(\gamma))$ $= \int_{\Lambda} (\chi \cdot \beta) = (\chi \cdot \beta) \cdot \beta$ $= \lambda \circ (g \circ f) = (g \circ f)^{\vee} (\lambda).$. Krusegneuz: $f:V \rightarrow W$ Isom. mr Unhard $g:W \rightarrow V \rightarrow$ f": W" →V" ist Isom. milluluhall g.V-JW

Eigenschaften der dualen Abbildung Vorlesungswoche 7

10. Dezember 2020



Injektivität/Surjektivität von f bzw. f^{\vee}

Seien V, W endlick-dimensionale K-VR, J:V -W en la HV. Sir fr: WV -> VV du mit duch Holidung.

(1) f injettiv => f surjettiv

(2) f orjettiv (=) f injettiv.

Bures on (1) '=>'. So f ingeltiv, U = In(f) & W. Dann of bijeltiv, dro en Isomophismus. Sti g: U -V der Untehrhoummarghessuns

Si U' & W en Komplement um U. $\bigwedge \xrightarrow{f} M$ 22: f': W' → V' sujellir. Si le V' 1 \ x / y ? t,(h)

V -→ U v → f(v)

