Basissätze Übersicht Vorlesungswoche 6

Ulrich Görtz

Lineare Algebra 1, WS 20/21

Erinnerung: Wo stehen wir

$$V$$
 ein K -Vektorraum

• Erzeugendensystem :
$$v_1, v_2 \notin S \iff v_1 \vee v_2 = V$$

Basis

av, + - + anv = 5 dursille

61. - VL

(_, V1. V. linear 1 mable + ES

gut a=--=a=0

Abschnitte 6.2, 6.3 im Skript

Existenz von Basen

Sate Sei V ein endlich erengter K-VR. Dann besitel V ern Basis aus endlich vielen Elementen.

Basiserganningssati Sind M & V lines unthe und E & V ein trungendu system, und grit M & E, dem within ein Basis B von V mit M & B & E.

Die Dimension eines Vektorraums

Si V en endlid erup K-VR.

Dans hebre je noi Baser von V die gliebe Arrell en Elementen.

Dien Arrell menner for die Dimertia var V.

Dimension von Untervektorräumen

V in endlish enough K-VR

. Jot U≤V em UVR, dam ist U etenfells endlich erungt und dim U ≤ dim V.

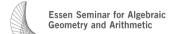
· Dimurious formel for Untrochtoraume U, W ⊆ V

 $\dim U + W + \dim U \cap W = \dim U + \dim W$.

Existenz von Basen Vorlesungswoche 6

Ulrich Görtz

Lineare Algebra 1, WS 20/21



Satz Seien Kein Körper und Vern K-VR. Sei BEV eine Teilmenge.

Dam sind ägnivalent:

- (i) B sot ene Basis um V
- (ũ) B ist linear undshinging und en Errenjenderspoten von V
- (iii) B ist ein minimales Erruge duoystem von V (d.l.: B ist en ES von V und for all B'∈B unt B' ≠B gr4: B' han ES von V)
- (ir) B of ene mere mele liner mettångige Teilmenge vm V, (d.h. B of liner mathängig mt of B∈B'∈V und gitt B≠B', so itt B' nicht liner mathängig).

Zevers (i) -> (u) l.u., word sol de Nullreller end. at LK on Elen. on B dustiller list, Energeden system: bler nach Definition.

(ii) => (iii) 22: Minimulitét. Su v CB. Auguromme, B\{v} vare en ES von V.

Dann existion the. $v_1, v_2 \in B \setminus \{v\}$, $a_1, a_n \in K$ and $v = a_1 v_1 + \dots + a_n v_n$.

Down gill abor or - a, v, - - - - a, v, = 0, wh does shill in Wider spoul down, den & liner undhängig ist.

(iii) => (iv) lige must, B ist liner wellings. Sout entire Va, _ va eB, a, _ a, ek

wit $a_1 \neq 0$ will $a_1v_1 + ... + a_nv_n = 0$, do $v_1 = -\frac{1}{a_1}(a_2v_2 + ... + a_nv_n)$, des bedecht $v_1 \in \langle B \setminus 2v_1 i \rangle$, doe ist $B \setminus 2v_1 i$ and in ES von Vmin Es man. l. u. - Wider sporch zur Minimelität.

auge mod: B menimel brun undlingers

Si ve V B. Wir rugun: Bu Est have ablinging.

De B en Es ve V ist, existen v. - v. eB, e. - a. ek

maxle. men v = a, v, + - + a, v, also v - a, v, - - - a, v = 0.

maxlu.

2 Bans

(ir) ⇒ (i). 20: year Vellor an V lint onl endertig als LK on the on B disteller.

- Si $v \in V$. Dam it Bury linear athery, so existing $v_1, -v_n \in B$, $a_1, a_2 \in K$ with $av + a_1v_1 + + a_2v_2 = 0$, with the toeff and = 0. Its beau with a = 0 sen, well B linear willings is. Dann felt: $v = -\frac{1}{a}(a_1v_1 + + a_2v_2) \in \langle B \rangle$.
- · Eindutighet de Dertilling: Angenomme for veV environ verdieline Dertilling

 v= 0, V, +-+0.V,= 6, W,+-+6, W, wit vi, W; EB, ai, biek.

Dans ist du Differe a, v, + _ + a, v, - L, w, - _ - b, w_ =0
ene LK, du der Nullvelter derstellt, und dre milt-turial ist, verl
due Derstellungen als versal rede angenommen vursue. Das stellt im Widwoppul
ger huere Unabhängigheit.

Zuse www fersung

Basis (=) l.u. + ES (=) minimber ES (=) maximbe l.u. Teilmage

Quiz

Sei $V=\mathbb{Q}^4$. Wählen Sie aus dem gegebenen Erzeugendensystem des Untervektorraums U eine Basis von U aus:

$$U = \left\langle \begin{pmatrix} 2\\1\\0\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \right\rangle$$

Sei $V=\mathbb{Q}^3$. Ergänzen Sie die folgende linear unabhängige Familie zu einer Basis von V:

Spelle on
$$A \in M_n(K)$$
 bilder

But on K^n

(=) $\forall b \in K^n$ for dos LAS n (A|b)

enduty lister

$$\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}, \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}, \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}

Speller Index Barrs.$$

(=) A but PLSF En

Quiz

Sei $V=\mathbb{Q}^4$. Wählen Sie aus dem gegebenen Erzeugendensystem des Untervektorraums

$$U \text{ eine Basis von } U \text{ aus:} \qquad \begin{matrix} u_1 & & u_2 & & u_3 & & u_4 \\ & & & & & & & & \\ U = \left\langle \begin{pmatrix} 2 \\ 1 \\ 0 \\ 3 \end{pmatrix}, & \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, & \begin{pmatrix} 0 \\ -1 \\ 0 \\ 3 \end{pmatrix}, & \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle$$

Beds. It & em Peter wh our die j-te spull in the em lk die alem Spulle, as het jede trater, die an to dal den Wille wisheld, drodhe trzewolult

 $\begin{pmatrix}
2 & 1 & 0 & 0 \\
1 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 \\
3 & 0 & 3 & 1
\end{pmatrix}
 \sim 0$ $\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{1}, U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{2}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{3}, U_{4}, U_{5}, U_{4} \text{ in }$ $\begin{pmatrix}
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
 = > U_{3}, U_{4}, U_{5}, U_{4}, U_{5}, U_{4}, U_{5}, U_{5},$

Existenz von Basen in endlich erzeugten Vektorräumen

Theorem

Seien K ein Körper und V ein endlich erzeugter K-Vektorraum. Dann existiert eine Basis von V.

Blocks) Si E E V en Erregudengsten, des nur endlik erele Elen. hat.

Tot E minimal, so handelt es sol un en Bers.

Andra fells enother VEE, od. E 203 eben fells en Erregude ogsten ist.

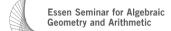
In endlik welle binnen voor dem E durk Entferne von Elementen zu enem minimaler ES, also eur Bass, vorletzen.

Severly Job $V = \{0\}$ der Nullrelitorraum. Dang of \emptyset em Basis. ('leve LK' ='leve Summe on V'' = 0).

Der Austauschsatz Vorlesungswoche 6

Ulrich Görtz

Lineare Algebra 1, WS 20/21



Der Austauschsatz

Satr	Seien Ken Körper und V en K-Velborrenn.	
<u></u>	Se V,, v, eV eve Bans mel	
	sa W1, _, W; ∈ V ene lineer methingge Familie.	
	Down existract and Talmange I & l1, _ n / mit #I=i,	Ben
	so des wi, wi, vj. j&I em Bess 1st.	- nene Bass h wide a Elem
		ul i≤n.
Bur	as durch vollständige Indultin med 2. IA 1=0 / (i=1)	
	15 i>0 Wal W1, - U; lin. math. M, not and de Fanche U1, _, U	ı-ı ℓ. и.,
-	nach Indultion voransetung höune wir also die Flem. V1, _ V. Umnumuri	un, so des
	Satz 6.37 im Skript	

Der Austauschsatz

W, _, Wil, Vi, _ vn ene Bans vn V bille. @

Tuster of don en tS, alm enotion a_1 , $a_n \in K$ mit $w_i = a_1 w_{i+1} + a_{i+1} w_{i-1} + a_i v_i + d_i v_i$.

Well $w_{i+1} = u_i$ linear multi, $i \circ t$, $g_i \circ t$ $w_i \notin \langle w_i, \dots, w_{i-1} \rangle$. Who enotion $j \ge i$ and $a_j \ne 0$

Dans himme er hel Ummummiere anderen, dess a; \$0.

 $\mathcal{D}_{mn} \quad q \mathcal{U} \qquad \qquad \mathcal{V}_{i} = -\frac{1}{a_{i}} \left(a_{i} \, \omega_{i} + - + \, a_{i-1} \, \omega_{i-1} \, - \, \omega_{i} \, + \, a_{i+1} \, v_{i+1} \, + - + \, a_{n} \, v_{n} \right),$

do $v_i \in \langle \omega_1, -\omega_i, v_{i+1}, -v_i \rangle$. Es $f \in \langle u_1, -\omega_i, v_{i+1}, -v_i \rangle = V$.

box: W1, _, Wi, Vit, _, V. liner mullingig.

Regarding: genist n up, den (Ow, _, Wi-1, Vit, _ vn brew with

O les cryn ⊕ ② anderfolh vire $v_i \in \langle u_{i,-}, v_{i+1}, v_{i+1}, -v_n \rangle$ in Widersprad on ⊕.

Satz 6.37 im Skript

(benutre Lemma 6.34)

$$\rightarrow \mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
.

Finden Sie $i, j \in \{1, 2, 3\}$, so dass e_i, e_i , weine Basis von \mathbb{Q}^3 ist.

$$\text{g.R.} \qquad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} \text{odir} & \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$$

Der Basisergänzungssatz

Sate Sie K en Kôger, V en K-VR,

. M EV em liner mothengeze Telmenge

. EEV en endliks Erryedengohen.

Es gelt MEE. Dann earthort em Bass B vm V mot MEBEE.

blures Wir himm em Bans B' E E von V fonder, orden wir zezebenfells geerzeich.

Nach den Ausberdecht lesme vir, fills netz, Elemente en B' so worten, dess wor en Baris B mt M & B & E.

Justeman: Ist V en endlød eræfter K-VR, no levt sich jede lin wilk Teilmegn in eur Burs erginnen.

Satz 6.39 im Skript

"Wir hömen M don't Flement aus E en ener Basis erzömen."

Quiz

Sei $V = \mathbb{Q}^4$. Ergänzen Sie die linear unabhängige Familie

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 6 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

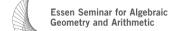
durch Vektoren aus der Standardbasis zu einer Basis von \mathbb{Q}^4



Die Dimension eines Vektorraums Vorlesungswoche 6

Ulrich Görtz

Lineare Algebra 1, WS 20/21



Erinnerung: Der Austauschsatz

Satz

Seien K ein Körper, V ein K-Vektorraum, $v_1, \ldots, v_n \in V$ eine Basis, $w_1, \ldots, w_i \in V$ eine linear unabhängige Familie. Dann existiert eine Teilmenge $I \subseteq \{1, \ldots, n\}$, #I = i, so dass die n Elemente $w_1, \ldots, w_i, v_i, j \notin I$, eine Basis von V bilden.

Kroller Sire K en Köper, V en K-Veltmann mit Bens V, _ h, und

per W, _ wi ene bener makk Familie un tlemme un V.

Dann glt ī = n.

Justerndur John. Sind sonroll V, _ v, do and W, _ w. Besen un

V, so glt ī = n.

Je wi Bish ever endlich erzeighe K-VR heben gleid viele tlemente.

Definition der Dimension

Det. Seren K en Korpu und V en endl. wurgte K-VR. Die Amall der Elemente in einer Bens von V heeft die Dimension die V von V.

```
(schooler and dry V)
```

(Kann dim V auf nicht - endl-erugh K-VR verilgenum.)

Beispiele / Quiz K köper

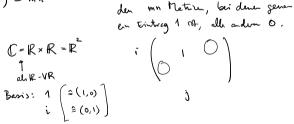
$$\begin{pmatrix} k^n & \text{lat Beris} \\ e_1 = \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}, e_2, \dots, e_n = \begin{pmatrix} e_1 \\ e_2 \end{pmatrix} \end{pmatrix}$$

$$\dim \Pi_{m \times n}(k) = mn$$

$$\dim_{\mathbb{R}} C = 2$$

$$\dim_{\mathbb{C}} C = 1$$

•
$$\int_{0}^{\infty} \int_{0}^{\infty} dt dt dt$$



Mmxn het Bars, de beselt an

Beispiel: Dimension der Lösungsmenge eines homogenen LGS

K Kôzm A E Mm xin (K), L= {xek"; Ax=o} ck" h A (= Ker (A))

 $\dim \mathbb{L} = n - r$, woher r = Amall dr filsudu

Einse in ZSF vm A. I ben'nt en Ban mt n-r tlementer (n-r = Anzell du fier votallaren (lulestimuter)

Salta	Sú K	in Koper, nell, V en K-VR mit din V=n.
(0)	Ide	V1, -, Vn EV en la make Familie, so it v1_vn en Bens vn V.

Ist v., _v. eV en Energendusgreen, dann ist v., _v. en Boss va V.

(1) Jede lin will Fambre list in over Besis ergännen. Aber ein besis Ream with melo do n Flemake helen.

(2) geder true jude nystem enthalt ene Bors, and em Bors on V been with verige do a Elemente haber.

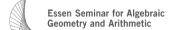
Bun the leave den Dimen was begilf and drebte and be Theore do LGS cufferen.

(Ergannay 6.46).

Dimension und Untervektorräume Vorlesungswoche 6

Ulrich Görtz

Lineare Algebra 1, WS 20/21



Dimension eines Untervektorraums

Satu Sir V ein endlich errengter K-VR, UEV Untrahlonnum.

- (1) Dann 18st U endlich errengt, und din U < dim V.
- (2) Gilt $\dim U = \dim V$, so filst U = V.

Berris m (1). Fills U will endlich erugt not, dem bet U herre endliche Besis.

Des beluht: jude endlich liner unebhöngze Familie von Elen aus U lässt sich in erw liner undh. Familie (durch Heinrigen eues Elenusts) verzäßen (dem wire sie maximal, so wäre es en Bass). Dann envolvet soger en l.u. Familie um Elen aus U mit dinV+1 Elenenten. Incon Familie vot auch liner undhöngig, wenn wir sie als Familie von Veldoren in V betrachten. Das ih en Widersprah, Iso ih U endlich erengt.

Abschnitt 6.4 im Skript

Dimension eines Untervektorraums

Mos but U em Ben U, ur. Die Familie U, ur rot linear well. and mV, wir können sie also new Basis un Verzieuren, des bederkt dim U ∈ dim V.

on (2). See non dan U = dan V und U, _ u, en Bans von U.

Down ist u, _ ur en lan. with. From von Veltre in V unt

dan V Elementer, also eine Bans von V, nieben en Errengender system

von V. Also gilt U = V

Abschnitt 6.4 im Skript

Quiz

Seien V ein endlich erzeugter K-Vektorraum und $U, W \subseteq V$ Untervektorräume.

Richtig oder falsch?

- (1) $\dim U \leq \dim W \Rightarrow U \subset W$. Film
- (2) $\dim U \leq \dim W \Leftarrow U \subseteq W$. Multig, dem la UVR in W
- (3) dim $U \cap W \le \dim U \le \dim(U + W)$.
- (4) $U, W \subseteq V \Rightarrow \dim(U+W) < \dim V$
- (5) $U, W \subseteq V \Leftarrow \dim(U+W) < \dim V$

dim U = dim W = 1

Existenz von Komplementärräumen

Sein Kein Korpu, Ven K-VR.

Ist UEV en UVR, dem lufor en UVR WEV en Komplement om U,

fill $U \oplus W = V$ (d.l. $U \cap W = 0$, U + W = V)

Sate Si V en endlik ennegh K-VR, UEV ein UVR. Dann existrat en Komplementairraum WEV m U.

Butis St un - ur en Bans un U. Diese erginne un menur

Wir definence: W:= < v1. - vs >. terms u, _ ur, v, _ vs vm V.

on O Wal U+W south U als and W enthall, lieft die Bens Ue, - Ur, Ue, - Ur, in U+W.

 $m \odot Tat v \in U \cap W$, then $v = \sum_{i=1}^{n} a_i u_i = \sum_{j=1}^{n} b_j v_j^2$, so ar $\sum_{c} a_{i}u_{i} - \sum_{j} b_{j} U_{j} = 0 . \text{ Pa } u_{i} - u_{r}, v_{i} - U_{s} \text{ l.u., } \text{ MAT } a_{i} = -a_{r} = b_{s} = 0, \text{ alm } u_{r} = 0.$

Finden Sie Komplementärräume von

entärräume von
$$U = \left\langle \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\rangle \quad \text{in} \quad \mathbb{Q}^3, \qquad \text{in} \quad \mathbb{W} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle$$

$$\longrightarrow U = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle \quad \text{in} \quad \mathbb{F}_2^3. \quad \text{if} \quad \mathbb{W} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle$$

Dimensionsformel für Untervektorräume

Sate Seien Ken Körper, Ven endl. erugter K-VR, U, WEV UVR. $\dim (U+W) + \dim (U \wedge W) = \dim (U) + \dim (W).$ Dann gilt Buris Si V, _ . Vr eine Baris von UNW. © & U & Wir ergänne diese m · em Bans v, _vr, u, _, us vm U · en Bus V1, -Vr, W1, -W1 vm W Bell V1, _ Vr, U1. _ U5, W1. _ W1 Not Bows vm U+W (darms | olgr der Satu) Regardany . Erzen jude system ; beler . When well; Belowth LK $a_1v_1+_1+a_2v_3+_5u_4+_5u_5+_5u_5+_5u_5+_6u_4=0$

Dimensionsformel für Untervektorräume

Kho

Set: es get
$$a_1 = -= a_r = b_1 = -= b_3 = c_1 = -= c_t = 0$$
.

Set: plo $a_1 v_1 + -+ c_r v_r + b_1 u_1 + -+ b_3 u_3 = -c_1 w_1 - --- c_t w_t$

Ell EW

Direct themself lieps also in UniV, list for also also

Linear home in them was $v_1 = -$, $v_2 = 0$ directles.

Well $v_1 = v_2 = v_3 = 0$.

Also $a_1 v_1 + -+ a_r v_r + c_1 w_1 + -+ c_t w_t = 0$, des habits $a_1 = --a_r = c_1 = --a_r = c_2 = 0$.

Quiz

Seien $U, W \subseteq \mathbb{Q}^5$ Untervektorräume mit $\dim U = \dim W = 3$. Welche Dimension hat $U \cap W$ mindestens?

Es gilt
$$d_{1}(U \cap W) = d_{1}U \cup d_{2}U \cup d_{3}U \cup d_{4}U \cup d_{5}U \cup d_{5}$$