Prof. Dr. U. Gortz SS 2016

Seminar on Semisimple Algebras

The topic of the seminar is semisimple algebras, more precisely, semisimple finite-dimensional
associative algebras over a field K. We do not assume that the algebras are commutative.
Interesting examples are division algebras over K, i.e., algebras in which every non-zero
element is invertible. A concrete example is the R-algebra of quaternions constructed by
Hamilton. We will see many other examples in the seminar.

This is a classical topic with many connections to other areas, and is a core part of “modern
mathematics”. Towards the end of the seminar, we will make the connection with local class
field theory, the main topic of the course Algebraic Number Theory 2. (So you get most out
of it if you do both. It is possible, however, to take part in the seminar without attending the
course, or vice versa.)

Credit points: The seminar is a combined Bachelor/Master seminar. If you successfully give
one of the talks marked (Ba), you get 6 Credit Points. If you successfully give one of the talks
marked (Ma), you obtain 9 CP (Master seminar) or 6 CP (Bachelor Seminar) at your choice.
The talks marked (BaTh) are particularly suitable as the basis of a Bachelor’s thesis. Please
contact me as soon as possible if you would like to write your Bachelor’s (or Master’s) thesis
with me.

Prerequisites: Linear Algebra, Algebra. If you want to give a talk in the second half, some
knowledge on local fields (e.g., finite extensions of Q) is needed; in this case, it is strongly
recommended that you attend the course Algebraic Number Theory 2.

Talks can be given in German or English upon the choice of the speaker.

How to give a successful seminar talk.

e Your first and most important goal should be to thoroughly understand the mathematics
behind your talk. This will typically take quite a lot of time, so start preparing the
talk early! Ask many questions: Be disciplined in asking yourself why (whether) claims
made in the references are true. What can be simplified? When you hit things you do
not understand, ask other participants of the seminar (those who will give the talks
before/after your one might very well have had the same questions, and you might be
able to answer them together). If you need assistance beyond that, feel free to ask.

o After digesting the mathematics, you should consciously (re-)arrange things for your
talk. Especially in [Lo], the theory is cut into very many small portions, something
which is (sometimes) useful in a text book, but usually not in a seminar talk. Ask
yourself in advance, which are the main points of your talk that every participant must
learn, and highlight them appropriately. You may skip some things if necessary (e.g.,
technical computations which you do not find enlightening); but think in advance about
your choice what to skip, instead of letting time pressure force this choice upon you. Do



not skip things that you yourself had difficulties in understanding; others will probably
have the same difficulties, so discussing these things is particularly valuable.

Notes on the references. We will in the beginning mostly follow Milne’s [Mi] Ch. IV (which
starts out completely independently of the earlier chapters). Later we will follow the book [Lo]
by Lorenz (which contains the material of the first talks as well, and in greater generality).
The book [GS] by Gille and Szamuely takes a more modern (but also more advanced) point
of view. Bourbaki’s [B] is an encyclopedic reference.

Note that Lorenz does not make the assumption that A be finite-dimensional as a K-vector
space, so many parts of his discussion simplify in our setting.

The page numbers for [Lo] given below refer to the English edition of the book.

If you have difficulties finding any of the references, please contact me.

1. Semisimple algebras: Basic notions (Ba)

We start by introducing the language of K-algebras (K a field) and modules over them.
All K-algebras will be assumed to be associative with 1 and finite-dimensional as K-vector
spaces. Define (left) modules, simple and semisimple modules, ideals, simple and semisimple
algebras, the opposite algebra A°P of an algebra A, the notion of division algebra.

Give examples of K-algebras:

e The endomorphism algebra of a module. Explain that the endomorphism algebra of A
as a left-A-module is A°P and generalize this to finite free A-modules. Explain that for
a division algebra D and n > 1, the algebra Endp(D™) is simple and semisimple.

e The group algebra of a finite group (we will come back to this in a later talk).
e Quaternion algebras. See e.g. [GS] 1.1; cf. also [Sch] 2.11, 8.11.

e What are examples of algebras which are not semisimple?

See [Mi] IV.1, [Lo] §28 (note that Lorenz does not make the assumption that A be finite-
dimensional as a K-vector space, so many parts of his discussion simplify in our setting).

2. Decomposition of a semisimple algebras as a product of simple algebras (Ba)
Discuss the Jordan-Hélder Theorem [Mi] IV.1.2.

Prove the key proposition [Mi] IV.1.4 = [Lo| §28, Lemma (p. 135), and explain its consequences
(e.g. [Mi] IV.1.6). Derive that A is semisimple if and only if every A-module is semisimple.

Discuss the decomposition of a semisimple A into isotypical components (the term isogenous
component used in [Lo] is uncommon and should be avoided), and conclude that if A if
semisimple, then it is isomorphic to a finite product of simple algebras ([Lo] §29, Theorem 1).



3. Wedderburn’s Theorem (Ba) (BaTh)
Define the notion of centralizer and prove the double centralizer theorem, [Mi] IV.1, Thm. 1.13.

Prove Wedderburn’s Theorem. Let A be a semisimple K-algebra. Then A is isomorphic
to a product My, (D1) X -+ M, (D,), where n; > 1 and the D; are division algebras.

Also discuss in which sense the decomposition is unique, and give some consequences. See
[Mi] IV.1 (Theorem 1.15 — Corollary 1.20). See also [Lo| §29.

4. Representations of finite groups (Ma) (BaTh)

Discuss the basics of the representation theory of a finite group G over an algebraically
closed field K of characteristic 0: Let A = K[G] be the group algebra. Explain the notion of
representation of GG and relate it to the notion of A-module.

Show that A is semisimple (e.g., use that every finite A-module can be equipped with an
G-invariant scalar product and hence can be decomposed as a finite direct sum of simple
modules). Hence by Wedderburn’s Theorem, A = [['_; M, (K) for some r > 1, n; > 1. Show
that r equals the number of conjugacy classes in G by looking at the center Z(A) of A. (But
note that there is no canonical bijection between the set of simple A-modules and the set of
congugacy classes in G.)

In the language of representation theory, we get that G has precisely r irreducible represen-
tations, of dimensions n1, ...n, (up to isomorphism), and that #G = 3" n?.

Define the character of a representation (or equivalently, of an A-module). Let e; € A denote
the idempotent element given by the unit matrix in M, (K) in the decomposition above,
compute it as an element of the group algebra, and derive the orthogonality relations for
characters. Give some consequences of those, for example:

e Representations V, V/ are isomorphic if they have the same character.

e If x is the character of a representation, then (x, x) is a positive integer, and (x, x) is
= 1 if and only if the underlying representation is irreducible. (See [Lo] §33 Def. 8 for
the notation.)

See for instance [Lo] §33, Sections 1 and 2; but restrict to the case of K algebraically closed
and of characteristic 0 right away to simplify the discussion.

Give some examples: G abelian; G a symmetric group S,, (at least for n = 3).

5. Tensor products and central simple algebras (Ba)

Define the notion of tensor product of two modules over a commutative ring R in terms of
the universal property. Show its existence and discuss its properties in the case that R is
a field. Explain that the tensor products of K-algebras (finite-dimensional or not) is a K-
algebra. Give examples (e.g., of a tensor product of two division algebra which is not a division
algebra). Discuss the notion of base change: If A is a K-algebra, and L/K a field extension,
then A ® L is an L-algebra. See e.g., Lang, Algebra, Ch. XVI, §1, §2; Jantzen, Schwermer,
Algebra VII.10, IX.2; Bosch, Algebra, 7.2.



Define the notion of central K-algebra and prove that the product of two central K-algebras
is central.

Prove that the product of a central simple K-algebra with a simple K-algebra is simple.

See [Mi] IV.2 up to and including Cor. 2.9.

6. The theorem of Skolem and Noether and the Brauer group of a field (Ba) (BaTh)

State and prove the Theorem of Skolem and Noether, and its important Corollary: Every
K-algebra automorphism of a central simple K-algebra is of the form = — aza™! for some
a€ A*.

Define the Brauer group Br(K) of the field K, including the group structure. Define the
notion of splitting field. Show that the Brauer group of an algebraically closed field is trivial,
and that the Brauer group of R consists of 2 elements (see e.g. [Hu] IX, Cor. 6.8).

7. Existence of splitting fields (Ba) (BaTh)

Using the Theorem of Skolem and Noether, prove that every central simple K-algebra contains
a field L such that [L : K]?> = [A : K] (in particular, L is finite over K), and that such an L
is a splitting field of A. Also show that there always exists a splitting field which is separable
over K. ([Mi], IV.3 up to and including Cor. 3.10.)

Give some examples! One possibility would be discussing the Brauer group of a finite field
(which is trivial by what is usually called Wedderburn’s Theorem, not to be confused with
Wedderburn’s Theorem of Talk 3), see [Lo] §29 Theorem 21. You could also look at quaternion
algebras again (depending on what has been covered in Talk 1). Another interesting thing
would be to see some explicit division algebras (together with splitting fields) over a non-
archimedean local field such as Q,.

8. Cohomological description of the Brauer group (Ma)

Explain the standard approach via “Galois descent” to the classification of central simple
algebras: For a central simple K-algebra A with splitting field L, assumed to be Galois
over K, fixing an isomorphism h: A ®x L = M,(L) the action of G := Gal(L/K) on
A ®k L (obtained from the Galois action on L) gives rise to a “twisted” action of G on
M,,(L) which will usually be different from the “standard” action given by the G-action on
the individual entries of the matrices in M,(L). With respect to this action, A = M,,(L)": A
is the subalgebra of elements in M, (L) fixed by all Galois automorphisms.

For o € G, write pgq (o) for the K-algebra automorphism M, (L) — M, (L) given by applying
o to all matrix entries, and write pa(c) := h~1(id ® o)h for the K-algebra automorphism
M, (L) — M, (L) obtained as described above.! Then ®, := psq(c) 'pa(c) is an L-algebra
automorphism, i.e., an element ®, € Autr(M,(L)), and the collection of ®, satisfies the
“l-cocycle condition”

Qyr = (I); D,

!Note that one can choose different normalizations at this point. Since [Lo] is the most comprehensive source
for the remainder of the seminar, here we follow the conventions of [Lo] §30. In particular, maps are applied on
the right, e.g., zPA(@) = ((xh_l)id®°)h and z®7 = (mpstd(o)_l)p“”). This is different from the normalization
in [Se].



where for ® € Aut, (M, (L)), 7 € G, we write ®™ := pyq(7) 1 ®@pstq (7). One can now go on
and show that every 1-cocycle (®,), comes from some K-algebra A, and nail down precisely
when two 1-cocycles (®,), and (¥, ), give rise to isomorphic K-algebras.

This leads to a description in terms of the “cohomology group H(G, Auty (M, (L)))” (you
need not introduce this group in the talk, but see [Se] VII Annexe and X.2; [Lo] §30 Appendix),
and is a very general formalism which applies to many analogous situations where one wants
to classify objects “over a field K” which attain a standard form after “base change” to some
Galois extension L of K. See [Se] Ch. X, in particular §2, §5. Cf. also Bosch, Algebra, 4.11.

Now using Skolem-Noether, Autr, (M, (L)) = PGLy(L) := GLn(L)/L*. Given a l-cocycle
(®s)s, choose a representative ®, € GL, (L) for each ®,. The cocycle condition implies that
O 1®d7®, = 1, hence we obtain

Cor 1= D17 D, € L.

Although the index set is now G x G instead of G, the families (¢, ) are much easier to
handle, since the ¢, are just elements of L™ rather than Auty (M, (L)); in particular, there
is no dependence on n anymore. The situation at hand is particularly favorable in the sense
that the family (cy ;) - still determines the K-algebra A. Show that these families satisfy the
2-cocycle condition, and prove that we obtain an isomorphism between the group Br(L/K)
of central simple K-algebras for which L (Galois /K with Galois group G) is a splitting field
and the “cohomology group” H%(L/K)(= H?(G, L*)) (give an ad hoc definition of this group
in terms of cocycles).

For the latter, you can follow [Lo] §30.1 (the end result is Theorem 2). Some translations
have to be done, since Lorenz works with the p4 (o) directly (p, in his notation) rather than
with the @, and applies Skolem-Noether to those elements (which lie in Autg (M, (L)), but
not in Autz,(My,(L))). You could also follow [Se|] X.5 (see Exercises 1, 2), but the end result
should be stated using the normalizations of [Lo]. See also [Mi] IV.3, second part (starting
after Cor. 3.10, up to and including Lemma 3.15).

9. Br(L/K) for a cyclic extension L/K (Ma)

Discuss compatibility with field extensions, [Lo] §30 F1 (= [Mi] IV Cor. 3.16). [Lo] §30 F2.
Since there is a lot of material to be covered in this talk, you probably have to be sketchy in
this part.

Next prove that the Brauer group of a field is a torsion group, [Lo] §30 Theorem 3 (the state-
ment is a more precise version of [Mi] IV Cor. 3.17, but of course we cannot use Milne’s proof).
Explain how the proof goes, but do not spend too much time on the technical computations.

The most important part of the talk is a detailed study of the case of a cyclic extension L/K.
When the Galois group G is cyclic, show that there is a particularly simple description of
H?*(L/K): [Lo] §30.4, in particular Theorem 4:

Br(L/K) = H*(L/K) = K* /Ny xL* for L/K cyclic.

We immediately obtain a new proof that the Brauer group of R consists of 2 elements.
Furthermore, use it to prove that the Brauer group of a finite field is trivial.



10. The Brauer group of a local field 1 (Ma)

Out next task is to compute the Brauer group of a non-archimedean local field K (i.e., K is
a finite extension field of Q,, for some prime p, or K = F,((¢)), a Laurent series field over a
finite field). See [Lo] §31, cf. also [Mi] IV 4.

Discuss valuations on division algebras and use this occasion to also give a quick reminder on
the structure of local fields.

The crucial observation is that every central simple algebra over K has an unramified splitting
field, [Lo] §31.3.

Finally compute K* /Ny, /i L* for an unramified extension L/K of local fields ([Lo] §31 The-
orem 2/Theorem 2') which by the previous talk is isomorphic to Br(L/K).

11. The Brauer group of a local field 2 (Ma)

Prove that by passing to the union running over all unramified extensions L/K, we obtain
an isomorphism

Br(K) = Q/Z for K a non-archimedean local field.

and discuss the more precise results in [Lo] §31.4.

12. Connection with Local Class Field Theory 1 (Ma)

The final topic of the seminar is the relation between the Brauer group of a local field and
local class field theory. To get started, note that for a finite group G, we obtain a duality
theory by defining the dual group

GY .= Hom,p, (G, Q/Z) = Homg, (G, C*),

the abelian group of group homomorphisms from G to the additive group Q/Z, or equivalently
to the multiplicative group C*, i.e., we obtain a natural isomorphism (GV)Y = G for abelian
G, and

(GV)V = G*  for general finite G.

Here G denotes the largest abelian quotient of G, i.e., the quotient of G by its commutator
subgroup.

Now let L/K be a Galois extension with Galois group G. Using our description of Br(E/K)
for cyclic E/K, one defines a pairing ([Lo] §32, Def. 1)

K*xGY = Br(L/K) C Br(K) = Q/Z.
We obtain a homomorphism
(L/K): K*/Np g L™ — Gal(L/K),

the reciprocity map. Prove that this map is an isomorphism ([Lo] §32, Theorem 1). This
statement is one of the key results of local class field theory.

13. Connection with Local Class Field Theory 2 (Ma)



Discuss the local existence theorem (at least if char K = 0) which describes precisely which
subgroups in K* have the form Ny L* for a finite extension L/K ([Lo] §32 Theorem 2).

Finally, derive the Local Kronecker-Weber Theorem from this ([Lo] §32 Theorem 3):
The maximal abelian extension ng of Q, is the extension generated by all roots of unity.
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Comments. Talks 3 and 9 are rather short, whereas Talks 4 and 8 (and also Talk 5 if the tensor
product needs to be introduced/discussed) contain quite a lot of material; maybe the content
of these talks should be distributed a little differently. Talks 5/6/7: The tensor product A x kK
for a k-algebra A and a field extension K/k should also be discussed in the case of K/k not
necessarily finite; and as a consequence, the base change morphism Br(k) — Br(K). For the
computation in Talk 6 of Br(R) as explained in [Hu] one needs to know some of the results
of Talk 7 — so this should be reordered or at least be explicitly stated in the program.



