Algebraic Geometry IV SS 2024

Problem sheet 7

Due date: Wednesday, May 29

Problem 25

Let k be a perfect field of characteristic p > 0. Let C be a (smooth, projective, geometrically connected) curve over k with function field K(C). As in Problem 23, let $C^{(p)}$ be the base change $C \otimes_{k,F_k} k$ with respect to the absolute Frobenius morphism of k.

- (1) Show that $C^{(p)}$ is a smooth, connected curve over k. Is $C^{(p)} \cong C$?
- (2) Show that the relative Frobenius $C \to C^{(p)}$ identifies $K(C^{(p)})$ with $K(C)^p$.
- (3) Show that the relative Frobenius $C \to C^{(p)}$ has degree p.

Hint. For Part (3), choose a finite morphism $C \to \mathbb{P}^1_k$, and use Part (2), multiplicativity of the degree, and Problem 23 (3).

Remark. It is not essential that C be projective and *geometrically* connected. Parts (1) and (3) remain true without the assumption that k be perfect. See, e.g., [GW2] Proposition 26.71.

Problem 26

- (1) Let k be a field of characteristic $\neq 2$, and let $a, b \in k$, so that the polynomial $x^3 + ax + b$ is separable. Let $d \in k^{\times}$. Show that the elliptic curves with affine equations $y^2 = x^3 + ax + b$ and $y^2 = x^3 + ad^2x + bd^3$ have the same *j*-invariant.
- (2) Give an example of a (non-algebraically closed) field k and $a, b, d \in k$ such that the two curves defined as in Part (1) are not isomorphic.

Hint. Use that the *j*-invariant of a curve with equation $y^2 = x^3 + ax + b$ is given by $2^6 3^3 \frac{4a^3}{4a^3+27b^2}$.

Remark. One says that the curve $y^2 = x^3 + ad^2x + bd^3$ arises from the curve $y^2 = x^3 + ax + b$ by a *quadratic twist.* One can show that for $a, b \neq 0$ they are isomorphic if and only if d is a square in k^{\times} . (If one of a, b is = 0, there is a similar, but slightly more complicated statement.)

Problem 27

Let $K \subset \mathbb{C}$ be an imaginary quadratic number field (i.e., K/\mathbb{Q} is a quadratic extension with $K \not\subseteq \mathbb{R}$). Let \mathcal{O}_K be the ring of integers of K.

(1) Let $0 \neq \mathfrak{a} \subseteq \mathcal{O}_K$ be an ideal. Show that \mathfrak{a} is a lattice in \mathbb{C} and that $\operatorname{End}(\mathbb{C}/\mathfrak{a}) = \mathcal{O}_K$ (endomorphism ring as a complex elliptic curve).

(2) Let *E* be a complex elliptic curve with endomorphism ring \mathcal{O}_K . Show that there exists a non-zero ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ such that $E \cong \mathbb{C}/\mathfrak{a}$.

Hint. For Part (1), to show $\operatorname{End}(\mathbb{C}/\mathfrak{a}) \subseteq \mathcal{O}_K$, take $\alpha \in \mathbb{C}$ with $\alpha \mathfrak{a} \subseteq \mathfrak{a}$. First show that $\alpha \in K$, then use that \mathcal{O}_K is a Dedekind domain.

Problem 28

Find all lattices $\Lambda \subset \mathbb{C}$ (up to homothety, i.e., up to replacing Λ by $\gamma\Lambda$, $\gamma \in \mathbb{C}^{\times}$) such that the group Aut(\mathbb{C}/Λ) of all automorphisms of the elliptic curve \mathbb{C}/Λ has more than 2 elements.

Hint. Say $\Lambda = \langle \omega_1, \omega_2 \rangle$, and $\alpha \Lambda = \Lambda$ for some $\alpha \in \mathbb{C} \setminus \{1, -1\}$. View α as a change of basis of Λ and show that α is an eigenvalue of a matrix in $GL_2(\mathbb{Z})$. Then determine all possible α and Λ .

References

[GW2] U. Görtz, T. Wedhorn, Algebraic Geometry II, Springer Spektrum (2023).