Problem sheet 11

Due date: Wednesday, June 26

Problem 41

Let k be a field, let \overline{k} be a separable closure of k, $\Gamma = \text{Gal}(\overline{k}/k)$ the absolute Galois group, and let ℓ be a prime number.

For an elliptic curve E over k we denote by

$$T_{\ell}E := \lim_{n} E[\ell^n](\overline{k})$$

the $(\ell$ -adic) Tate module of E. This construction is functorial in E. Now assume that $\ell \neq \operatorname{char}(k)$.

It follows from the results we proved on the structure of $E[\ell^n]$ that $T_{\ell}E$ is a free \mathbb{Z}_{ℓ} -module of rank 2 (where \mathbb{Z}_{ℓ} denotes the ring of ℓ -adic integers). Explain that the action of Γ on \overline{k} induces actions on each $E[\ell^n](\overline{k})$ and altogether a continuous action of Γ on $T_{\ell}E$.

Now let E, E' be elliptic curves over k. Prove that the natural map

$$\operatorname{Hom}_k(E, E') \to \operatorname{Hom}_{\mathbb{Z}_\ell}(T_\ell E, T_\ell E')$$

is injective and has image inside the Γ -invariants $\operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}E, T_{\ell}E')^{\Gamma}$.

Remark. More is true: Since $\operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}E, T_{\ell}E')$ is a \mathbb{Z}_{ℓ} -module, the above map induces a map

$$\operatorname{Hom}_{k}(E, E') \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \to \operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}E, T_{\ell}E')^{\Gamma}.$$

With a bit more effort, it can be shown that this map also is injective for every field k. (This easily implies that $\operatorname{Hom}_k(E, E')$ is a free \mathbb{Z} -module of rank ≤ 4 .) Tate proved that it is an isomorphism, if k is finite; it is a deep theorem of Faltings that it is an isomorphism whenever k is a number field.

Problem 42

Let k be a field, ℓ a prime number different from the characteristic of k, and E/k an elliptic curve such that $\operatorname{End}(E) = \mathcal{O}_K$, the ring of integers in a quadratic imaginary number field K. From the inclusion $\operatorname{End}(E) \subset \operatorname{End}_{\mathbb{Z}_\ell}(T_\ell E)$ (Problem 41) we obtain an \mathcal{O}_K -module structure on $T_\ell E$. Prove that the Tate module $T_\ell E$ is a free $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_\ell$ -module of rank 1.

Hint. We know from algebraic number theory that $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_\ell$ is either the product of two copies of \mathbb{Z}_ℓ (if ℓ splits in K) or is a discrete valuation ring which is finite free

over \mathbb{Z}_{ℓ} of rank 2. In one of the cases, use that $\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \subseteq \operatorname{End}(T_{\ell}E)$, cf. the remark to Problem 41.

Problem 43

Let E be a relative elliptic curve over a connected scheme S, and let $f: E \to E$ be an automorphism of E.

- (1) Prove that $\deg(f) = 1$ and that $\operatorname{tr}(f) \in \{-2, -1, 0, 1, 2\}$.
- (2) Give examples of elliptic curves and automorphisms f with tr(f) = 0, tr(f) = 1and tr(f) = 2.

Hint. For Part (2), recall Problem 28.

Problem 44

Let k be an algebraically closed field and let S be a proper connected k-scheme. Let E/S be a relative elliptic curve. Prove that all the curves E_s , $s \in S(k)$, are isomorphic (as elliptic curves over k).

Hint. Use the j-invariant.