Problem sheet 10

Due date: Wednesday, June 19

Problem 37

Let S be a connected scheme. For an isogeny $f: E \to E'$ of relative elliptic curves over S we denote by $\deg(f)$ the rank of the locally free \mathscr{O}_S -module corresponding to the finite locally free S-scheme Ker(f). We also set $\deg(0) = 0$.

- (1) Explain that this defines $\deg(f) \in \mathbb{Z}$ for all homomorphisms $E \to E'$ of elliptic curves over S. What happens if S is not assumed to be connected?
- (2) Let $f: E \to E$ be an endomorphism of an elliptic curve E over S. Show that $f + f^{\vee}$ is an integer. We denote this integer by tr(f) and call it the *trace* of f.

Hint. For Part (2), compute the degree of [1] + f.

Problem 38

Let S be a connected scheme and let E/S be an elliptic curve. Let $f: E \to E$ be an endomorphism of the elliptic curve E.

- (1) Show that f is a zero of the polynomial $X^2 \operatorname{tr}(f)X + \operatorname{deg}(f)$.
- (2) Show that for $n, m \in \mathbb{Z}$ we have $n^2 \operatorname{tr}(f)mn + \operatorname{deg}(f)m^2 = \operatorname{deg}(n mf) \ge 0$.
- (3) Show that $x^2 \operatorname{tr}(f)x + \operatorname{deg}(f) \ge 0$ for all $x \in \mathbb{R}$ and conclude that

$$\operatorname{tr}(f)^2 \leqslant 4 \operatorname{deg}(f).$$

Problem 39

Let S be a connected scheme and let E be a relative elliptic curve over S such that the endomorphism ring $\operatorname{End}_S(E)$ is commutative.

- (1) Prove that $\operatorname{End}_S(E)$ is an integral domain.
- (2) Prove that $\operatorname{Frac}(\operatorname{End}_S(E)) = \operatorname{End}_S(E) \otimes_{\mathbb{Z}} \mathbb{Q}$.
- (3) Prove that $\operatorname{Frac}(\operatorname{End}_S(E))$ is equal to \mathbb{Q} , or is an imaginary quadratic number field.

Remark. We proved in AG3 Problem 22 that whenever S is the spectrum of a field of characteristic 0, then the endomorphism ring of every elliptic curve over S is commutative. By the results on the constancy locus of a morphism, this holds whenever S is connected and contains a point with residue field of characteristic 0.

Problem 40

Let q be a prime power, let \mathbb{F}_q be the finite field with q elements and let E be an elliptic curve over \mathbb{F}_q . Denote by $F \in \text{End}(E)$ the q-Frobenius isogeny of E.

- (1) Show that [1] F is étale.
- (2) Show that $#E(\mathbb{F}_q) = 1 + q \operatorname{tr}(F).$
- (3) Prove the Hasse bound

$$|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}.$$

Remark. One can show (this is part of the *Weil conjectures* for curves over finite fields) that every smooth projective curve E of genus 1 over the finite field \mathbb{F}_q satisfies the estimate in Part (2). In particular, it follows that $E(\mathbb{F}_q) \neq \emptyset$ for every such E, so E can be equipped with the structure of an elliptic curve.