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LECTURE COURSE NOTES.

ULRICH GÖRTZ

Introduction

This lecture course is a continuation of the course Algebraic Geometry 1
which covered the definition of schemes, and some basic notions about
schemes and scheme morphisms: Reduced and integral schemes, immersions
and subschemes, and fiber products of schemes.
The main object of study of this term’s course will be the notion of OX -

module, a natural analogue of the notion of module over a ring in the context
of sheaves of rings. As we will see, the OX -modules on a scheme X contain
a lot of information about the geometry of this scheme, and we will study
them using a variety of methods. In particular, we will introduce the notion
of cohomology groups, a powerful algebraic tool that makes its appearance in
many areas of algebra and geometry.

These notes are not complete lecture notes, but should rather be thought of
as a rough summary of the content of the course. The notes originate from a
similar course which I taught in 2019, and I will make some additions and
changes (also concerning the selection of material treated in the course) as
the term progresses.

References. The books [GW1] by Wedhorn and myself, by Hartshorne
[H], and by Mumford [Mu]. More precise references are given in most of the
individual sections. Mumford still uses the ancient terminology and calls a
prescheme what we call a scheme, and a scheme what we will call a separated
scheme. Further references: [Stacks], [EGA].

1



2 ULRICH GÖRTZ

1. Separated and proper morphisms

The functorial point of view.

(1.1) Schemes as functors.

April 3,
2023 References: [GW1] Sections (4.1), (4.2); [Mu] II.6.

As we have discussed in Algebraic Geometry 1, to a scheme X we can
attach its functor of T -valued points:

hX : (Sch)opp → (Sets), T 7→ X(T ) := Hom(T,X),

which on morphisms is just given by composition: f : T ′ → T is mapped
under hX to the map X(T ) → X(T ′), α 7→ α ◦ f .
Example 1.1.
(1) For any affine scheme X = SpecA, we have X(T ) = Hom(A,Γ(T,OT )).

For example, this gives An
R(T ) = Γ(T,OT )

n for any ring R and any R-
scheme T (where we understand An

R(T ) as the set of morphisms T → An
R

of R-schemes).
(2) It is more difficult to describe Pn(T ) for general T (for T the spectrum

of a field, we have the description by homogeneous coordinates). We will
come back to this later.

Using the notion of a morphism of functors, we can speak of the category

Ĉ := Func((Sch)opp, (Sets)) of all such functors, and we obtain a functor

h : (Sch) → Ĉ , X 7→ hX , which on morphisms is – once again – defined by
composition: α : X ′ → X is mapped by h to the morphism hX′ → hX of
functors given by X ′(T ) → X(T ), β 7→ β ◦ α.
Even though at first sight this may look complicated, this is an entirely

“formal” (i.e., category-theoretic) procedure which has nothing to do with
schemes. In fact, if C is any category, for an object X of C we can define
the functor

hX : C opp → (Sets), T 7→ X(T ) := HomC (T,X),

and now setting Ĉ := Func(C opp, (Sets)), we obtain a functor h : C → Ĉ .

Theorem 1.2. (Yoneda Lemma) For any category C , the functor h
constructed above is fully faithful.

Proof. Given X and Y and a morphism Φ: hX → hY , we obtain a morphism
X → Y by applying Φ to idX ∈ hX(X). One checks that this is an inverse
of the map Hom(X,Y ) → Hom(hX , hY ) given by h. □

Remark 1.3. More generally, one can show that for every functor
F : C opp → (Sets) there are identifications F (X) = HomFunc(C opp,(Sets))(hX , F )
that are functorial in X.
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We will mostly apply the Yoneda Lemma to the category of schemes, or
the category of S-schemes for some fixed scheme S. Let us list some of
its consequences (as before, these facts are not specific to the category of
schemes):

(1) Let X, Y be schemes. The following are equivalent:

(i) X ∼= Y ,

(ii) hX ∼= hY (isomorphism of functors)

(iii) there exists a family fT : X(T ) → Y (T ) of bijections of sets that is
functorial in T , i.e., for every scheme morphism T ′ → T , the diagram

X(T ) Y (T )

X(T ′) Y (T ′)

fT

fT

is commutative.

(2) Let X, Y be schemes. Giving a scheme morphism X → Y is equivalent
to giving a family of maps fT : X(T ) → Y (T ) of sets for each scheme T ,
that is functorial in T (same condition as in (1) (iii)). Example. The

determinant of a matrix is a scheme morphism An2 → A1.

(3) A diagram of scheme morphisms is commutative if and only if for every
scheme T the diagram (in the category of sets) obtained by replacing
each scheme by its set of T -valued points, and replacing the scheme
morphisms by the induced maps of sets, is commutative.

Fiber products, base change, and separated morphisms.

(1.2) Recap: fiber products of schemes.

April 5,
2023References: [GW1] Sections (4.4)–(4.6); [H] II.3; [Mu] II.2.

The universal property of a fiber product generalizes the universal property
of a product (of two objects, in any category). It is defined as follows. (See
the lecture notes for Algebraic Geometry 1 for a bit more background, e.g.,
an explanation of the term fiber product.)

Definition 1.4. Let C be a category. We fix morphisms f : X → S and
g : Y → S. Then an object P in C together with morphisms p : P → X and
q : P → Y such that f ◦p = g ◦ q is called a fiber product of X and Y over S,
if for every object T of C together with morphisms α : T → X and β : T → Y
with f ◦ α = g ◦ β, there exists a unique morphism ξ : T → P with p ◦ ξ = α,
q ◦ ξ = β.

We say that a commutative square
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A B

C D
is cartesian, if it is a fiber product diagram, i.e., if A satisfies the universal

property defining the fiber product of B and C over D.

Theorem 1.5.
(1) If f : X → S, g : Y → S are morphisms of schemes, then the fiber product

of X and Y over S exists.
(2) If in (1) X = SpecA, Y = SpecB, S = SpecR are affine schemes (so

that f and g are given by ring homomorphisms R → A, R → B, then
SpecA⊗R B together with the morphisms induced by the natural maps
A→ A⊗R B, B → A⊗R B, is the fiber product of X and Y over S.

(3) For f , g as in (1), and open covers S =
⋃

i Ui, f
−1(Ui) =

⋃
j Vij,

g−1(Ui) =
⋃

kWik, for all i, j, k, the natural morphism Vij ×Ui Wik →
X ×S Y induced by the universal property of the fiber product is an open
immersion, and taken together the open subschemes of the above form
cover X ×S Y .

Example 1.6. If f : X → S is any morphism and V → S is an open
immersion, then we can identify X ×S V = f−1(V ) as X-schemes, i.e., the
projection X×S V → X is an open immersion which induces an isomorphism
X ×S V ∼= f−1(V ) (where we view f−1(V ) as an open subscheme of X).

Example 1.7. (Fibers of a morphism) If f : X → S is a morphism of schemes
and s ∈ S, then we call the fiber product Xs := f−1(s) := X ×S Specκ(s)
(with respect to f and the natural morphism Specκ(s) → S) the scheme-
theoretic fiber of f over s. The projection Xs → X induces a homeomorphism
between the topological space of the schemeXs and the fiber of the continuous
map f over s. Cf. the Algebraic Geometry 1 class, or see [GW1] Section (4.8).

Lemma 1.8. In the list below, the “obvious” maps between fiber products
are isomorphisms:
(1) X ×S S ∼= X,
(2) X ×S Y ∼= Y ×S X,
(3) (X ×S Y ) ×T Z ∼= X ×S (Y ×T Z) (and this allows us to omit the

parentheses in expressions like these).

Proof. These properties can easily be checked using the universal property
(or, what more or less amounts to the same, by the Yoneda lemma). In any
case, this reduces to checking the above claims for fiber products of sets,
where they follow immediately from the explicit description of fiber products
of sets. □

April 12,
2023

Example 1.9. (Group schemes) Let S be a scheme. A group scheme over
S is an S-scheme G together with a functor h : ((Sch)/S)opp → (Grp), such
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that hG is the composition of h and the forgetful functor (Grp) → (Sets). In
other words, for every S-scheme T , we are given a group structure on G(T ),
and for every morphism T ′ → T , the induced map G(T ) → G(T ′) is a group
homomorphism.
In view of the above discussion, we can express this structure equivalently

by giving a multiplication morphism m : G×SG→ G, a morphism i : G→ G
(“inverse element”) that induces the map g 7→ g−1 on each G(T ), and a
morphism S → G (“neutral element”) that induces the neutral element in
each G(T ) (note that for every S-scheme T , the set S(T ) is a singleton).
The morphisms m, i, e have to satisfy certain conditions reflecting the group
axioms; the conditions can be expressed by requiring that certain diagrams
be commutative. See [GW1] Section (4.15).

(1.3) Base change.

References: [GW1] Chapter 4, in particular Sections (4.7)–(4.10).

Given scheme morphisms f : X → S and g : S′ → S, we call the projection
X ×S S

′ → S′ the morphism obtained from f by base change along g. This
defines a functor from the category of S-schemes to the category of S′-
schemes.
A particularly simple example is the case where g : V → S is an open

immersion. In that case the base change of f is just the restriction of f to
f−1(V ) → V .
Many properties of scheme morphisms are “stable under base change” in

the following sense: A property P of scheme morphisms is called stable
under base change if for every morphism f : X → Y of S-schemes that has
property P and every scheme morphism S′ → S, the induced morphism
X ×S S

′ → Y ×S S
′ also has property P.

Given a property P, to check that it is stable under base change, it is
enough to check that whenever f : X → S has the property, and g : S′ → S is
a scheme morphism, then X×S S

′ → S′ also has the property. In fact, this is
clearly a special case of the above definition (namely the case where Y = S).
On the other hand, suppose this special case is true and f : X → Y is any
morphism of S-schemes. Identifying X ×S S

′ = X ×Y (Y ×S S
′) using the

rules of “computations with fiber products” (Lemma 1.8), the base change
X×SS

′ → Y ×SS
′ is identified with the projectionX×Y (Y ×SS

′) → Y ×SS
′.

Applying the special case to X → Y and the base change Y ×S S
′ → Y , we

obtain that X ×S S
′ = X ×Y (Y ×S S

′) → Y ×S S
′ has property P.

Proposition 1.10. The following properties of scheme morphisms are
stable under base change: Being . . .
(1) an open immersion,
(2) a closed immersion,
(3) an immersion,
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(4) quasi-compact,
(5) surjective,
(6) an isomorphism,
(7) . . . most of the properties of scheme morphisms that we will get to know

later in the course . . .

A notable exception is the property of being injective: Can you find an
example of an injective morphism X → S of schemes and a morphism S′ → S
such that the base change X ×S S

′ → S′ is not injective?
All the properties in the above list, and also being injective, are stable

under composition, i.e., if two composable morphisms both have the property,
then so does the composition.

Example 1.11.
(1) If R → R′ is a ring homomorphism, then An

R ⊗R R′ := An
R ×SpecR

SpecR′ = An
R′ . In view of this we define, for an arbitrary scheme S,

An
S := An

Z ×SpecZ S.
(2) If R → R′ is a ring homomorphism, then Pn

R ⊗R R′ := Pn
R ×SpecR

SpecR′ = Pn
R′ . In view of this we define, for an arbitrary scheme S,

Pn
S := Pn

Z ×SpecZ S.

(1.4) Separated morphisms.

References: [GW1] Sections (9.3), (9.4); [H] II.4.

Recall the following description of a topological space X being Hausdorff:
X is Hausdorff if and only if the “diagonal” {(x, x) ∈ X ×X; x ∈ X} is a
closed subset of X ×X (with respect to the product topology).

As we have discussed, the underlying topological space of a scheme usually
is not Hausdorff. On the other hand, the (fiber) product of schemes usually
does not carry the product topology, and it turns out that using the above
condition in the context of schemes gives rise to an interesting and useful
notion for schemes (which in some sense is a good replacement for the
Hausdorff property; see Proposition 1.17 for an example).

Definition 1.12. Let S be a scheme, and let X be an S-scheme. Denote by
∆: X → X ×S X the diagonal morphism (i.e., the unique morphism whose
composition with both projections is the identity of X). We say that X is a
separated S-scheme, or that X is separated over S, or that the morphism
X → S is separated, if ∆ is a closed immersion.

April 17,
2023 Remark 1.13.

(1) Suppose that X → S is a morphism of affine schemes, corresponding
to a ring homomorphism φ : A → B, say. Then X ×S X also is affine
and the diagonal X → X ×S X corresponds to the ring homomorphism
B ⊗A B → B, b ⊗ b′ 7→ bb′. Since this ring homomorphism is clearly
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surjective, ∆ is a closed immersion. Thus we see that every morphism
between affine schemes is separated.

(2) For every morphism X → S, the diagonal ∆: X → X ×S X is an
immersion. Therefore we could phrase the condition that X is separated
over S equivalently by requiring that the image ∆(X) is a closed subset
of (the topological space of the scheme) X ×S X.

(3) Let k be a field, and let X be the “affine line with doubled origin”. Then
X is not separated over k. (The “valuative criterion for separatedness”
shows that this is really a typical example of a non-separated scheme.)

(4) Note that the notion of being separated has nothing to do with the notion
of being separable (as in separable field extension; there also exists the
notion of separable scheme morphism).

Proposition 1.14. Let f : X → S be a morphism of schemes, where
S = SpecR is affine. The following are equivalent.

(i) The morphism f is separated.
(ii) For all affine open subschemes U, V ⊆ X, the intersection U ∩V is affine

and the natural homomorphism

Γ(U,OX)⊗R Γ(V,OX) → Γ(U ∩ V,OX)

is surjective.
(iii) There exists an affine open cover X =

⋃
i Ui such that for all i, j the

intersection Ui ∩ Uj is affine and the natural homomorphism

Γ(Ui,OX)⊗R Γ(Uj ,OX) → Γ(Ui ∩ Uj ,OX)

is surjective.

Proof. The key point is noting that for U, V ⊆ X open, U ×X V can be
identified with U ∩ V , and that as a consequence the diagram

U ∩ V U ×S V

X X ×S X
∆

is cartesian. □

Corollary 1.15. Let S be an affine scheme, and let X be a separated
S-scheme. If U, V ⊆ X are affine open subschemes, then the intersection
U ∩ V is again an affine scheme.

Corollary 1.16. Let R be a ring, and n ≥ 0. Then the projective space Pn
R

is separated over R.

The following proposition illustrates (why?) that in some sense the property
of being separated resembles the Hausdorff property of topological spaces.
(See Algebraic Geometry 1, Problem 52, for an example which shows that
the reducedness assumption cannot be dropped.)
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Proposition 1.17. Let S be a scheme, let X be a reduced S-scheme, and
let U ⊆ X be an open dense subscheme. Let Y be a separated S-scheme. If
f, g : X → Y are scheme morphisms such that f|U = g|U , then f = g.

Remark 1.18. Some further useful properties:

(1) Every immersion and more generally every monomorphism of schemes is
separated. (A morphism X → Y of schemes is called a monomorphism,
if for every scheme T the map X(T ) → Y (T ) is injective. This is
the “usual” categorical notion of monomorphism. Every immersion is
a monomorphism. If X → S is a monomorphism, then the diagonal
morphism X → X ×S X is an isomorphism, and a fortiori a closed
immersion.)

(2) The composition of separated morphisms is separated. The base change
of a separated morphism is separated.

(3) The property of being separated can be checked locally on the target.

(4) Given a morphism f : X → Y , f is separated if and only if the induced
morphism fred between the underlying reduced subschemes of X and Y
is separated.

Proper morphisms.

(1.5) Proper maps between topological spaces.

References: [Bou-TG] Ch. I §10.

Most schemes that we have encountered so far (in particular, all affine
schemes, projective space over any ring, subschemes V+(I) of projective
space over a ring, . . . ) are quasi-compact. On the other hand, from a
geometric point of view, e.g., the affine line (or higher-dimensional affine
space) “should not be viewed” as a compact space. The notion of properness
is a suitable replacement in algebraic geometry for the notion of compactness
in topology/differential geometry.
Similarly as separatedness, we will define properness in terms of fiber

products of schemes, starting from a characterization of quasi-compact
topological spaces, given by the notion of proper map between continuous
spaces, which we discuss below as a motivation for the definition of proper
scheme morphisms. The purpose of motivation aside, the rest of this section
plays no role in the course.
Note that fiber products in the category of topological spaces exist. In fact,

for continous maps X → S, Y → S, the set-theoretic fiber product X ×S Y ,
equipped with the subspace topology for the inclusion X ×S Y ⊆ X × Y
(where the right hand side carries the product topology) is easily seen to
satisfy the required universal property.
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Recall that a continous map f : X × Y is closed, if for every closed subset
C ⊆ X, the image f(C) ⊆ Y is closed.

Definition 1.19.
(1) We call a continuous map f : X → Y universally closed, if for every

continuous map Z → Y , the “base change” of f along Z → Y , i.e., the
induced map X ×Y Z → Z, is closed.

(2) We call a continuous map f : X → Y proper, if for every topological
space Z, the induced map f × idZ : X × Z → Y × Z is closed.

Proposition 1.20. Let f : X → Y be a continuous map. Consider the
following properties.
(i) f is universally closed,
(ii) f is proper,
(iii) f is closed and for every y ∈ Y the fiber f−1(y) is quasi-compact.
(iv) for every quasi-compact subset K ⊆ Y , the inverse image f−1(K) is

quasi-compact.
Then (i) ⇒ (ii) ⇔ (iii) ⇒ (iv).

If in addition Y is Hausdorff, then (i) ⇔ (ii).
If in addition Y is Hausdorff and locally compact, then all the above

properties are equivalent.

In the remainder of the section, we will discuss the proof of the proposition.
It is easy to see that (i) implies (ii). In fact, if Z is a topological space, then
X × Z = X ×Y (Y × Z), so the map occurring in (ii) can be written as the
base change of f along the projection Y × Z → Y .
Conversely, if Y is Hausdorff, and g : Z → Y is continuous, then X ×Y Z

is closed in X × Z. Similarly the map Z → Y × Z, z 7→ (g(z), z), which up
to switching the factors is the graph of g, identifies Z with a closed subset of
Y ×Z. Now let C ⊆ X×Y Z be closed, and write fZ : X×Y Z → Z for the base
change of f . Then fZ(C) ⊆ Z, under the inclusion Z ↪→ Y × Z, is identified
with the image of C under the composition X ×Y Z → X × Z → Y × Z.
This shows that (ii) implies (i), if Y is Hausdorff.
Denote by P the topological space consisting of a single point.
In the following lemma, which in a sense is the most interesting part of

the proposition, we consider the special case Y = P . In this case, properties
(i) and (ii) are equivalent for trivial reasons (since P is a terminal object in
the category of topological spaces, fiber products over P are just products).
Likewise, (iii) and (iv) are equivalent in this case. The lemma proves that,
for Y = P , conditions (i) and (ii) imply conditions (iii) and (iv).

Lemma 1.21. Let X be a topological space such that the map X → P is
proper. Then X is quasi-compact.

Proof. We need to show that given any cover of X by open subsets, finitely
many of these suffice to coverX. Passing to complements, we can equivalently
show the following statement: Let (Zi)i∈I be a family of closed subsets of X
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such that for every finite subset J ⊆ I the intersection
⋂

i∈J Zi is non-empty.
Then the intersection

⋂
i∈I Zi is non-empty.

So take a family (Zi)i of closed subsets of X such that all finite intersections
are non-empty. In particular, all the Zi are themselves non-empty. Adding
further sets to this family, we may assume for every finite subset J ⊆ U , the
intersection

⋂
i∈J Zi is itself one of the closed subsets in this family. We will

use that the map X ×X ′ → X ′ is closed for the following topological space
X ′.
As a set X ′ is the disjoint union of X and a set consisting of one element ω,

i.e., we formally add one further point to X. The topology on X ′ is defined
as follows. (Note that the topology on X is not the subspace topology for the
inclusion X → X ′ in most cases; in fact, this inclusion will not be continuous
unless X carries the discrete topology.) The open sets of X ′ are the sets that
can be obtained as a union of sets of the form {x}, x ∈ X, and Zi ∪ {ω},
i ∈ I. One checks that this defines a topology, i.e., that ∅ and X ′ are open,
and that arbitrary unions and finite intersections of such sets again have this
form. Only for the third point there is really something to be checked, but
the claim easily follows in view of our assumptions on the family (Zi)i.
Note that the closure of the subset X ⊆ X ′ in X ′ is all of X ′ since every

open subset that contains ω meets X.
As indicated above, we will use that the projection p2 : X ×X ′ → X ′ is

closed by our assumption that the map X → P is proper. Denoting by C
the closure of the subset ∆ := {(x, x); x ∈ X} ⊆ X ×X ′, we obtain that
p2(C) is closed. Since it clearly contains all points of X ⊆ X ′, by the above
remark we see that ω ∈ p2(C). This means that there exists ξ ∈ X such that
(ξ, ω) lies in the closure of ∆ (with respect to the product topology).

Let us show that ξ ∈
⋂

i∈I Zi. Saying that (ξ, ω) lies in the closure of ∆
means that every neighborhood of (ξ, ω) in X ×X ′ meets ∆. In particular,
for every neighborhood U ⊆ X of ξ and every i, U × (Zi ∪ {ω}) meets ∆.
Fixing i, we see that Zi meets every neighborhood of ξ in X, i.e., ξ lies in
the closure of Zi. Since Zi is closed, this means ξ ∈ Zi, as we wanted to
show. □

It is easy to see that whenever f : X → Y satisfies (ii) and Y ′ ⊆ Y is
a subspace, then the restriction f−1(Y ′) → Y ′ of f satisfies (ii) as well.
Applying this to singletons Y ′, from the lemma we obtain the implication
(ii) ⇒ (iii) in the proposition.

For the implication (iii) ⇒ (iv), to ease the notation we first note that
(replacing Y by K and X by f−1(K) and observing that (iii) still holds) it
is enough to handle the case that K = Y is quasi-compact. We then have to
show that X is quasi-compact. So let X =

⋃
Ui be an open cover of X. By

quasi-compactness of the fibers of f , for each y there exists an open Uy ⊆ X
containing f−1(y) which is a finite union of subsets of the form Ui. Since f
is closed, Vy := Y \ f(X \ Uy) is open in Y . It clearly contains y, so all the
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Vy together cover Y . By quasi-compactness of Y , finitely many Vy suffice to
cover Y . But then the corresponding Uy cover X, and we are done.
Let us show that (iii) implies (ii), so let f : X → Y as in (iii) be given and

let Z be any topological space. Let C ⊆ X × Z be closed. We show that
W := (Y × Z) \ (f × idZ)(C) is open in Y × Z. For (y, z) ∈W , we need to
find open neighborhoods U of y in Y and V of z in Z such that U × V ⊆W ,
or in other words: (f−1(U)× V )∩C = ∅. If y does not lie in the image of f ,
we can take U to be any neighborhood of y which is disjoint from the image
of f (which exists since f is closed). Otherwise, for each x ∈ f−1(y), let Ux

be an open neighborhood of x in X and Vx an open neighborhood of z in Z
auch that (Ux × Vx) ∩ C = ∅. Since f−1(y) is quasi-compact, finitely many
of the Ux suffice to cover this fiber. Let U ′ denote their union, and V the
intersection of the corresponding sets Vx. Since f is closed, U := Y \f(X \U ′)
is an open neighborhood of y. One checks that U and V constructed in this
way have the desired property.
Finally, let us discuss the implication (iv) ⇒ (iii). As we will see, we will

have to assume that Y is Hausdorff and that every y admits a quasi-compact
neighborhood, i.e., there exist an open U and a quasi-compact K ⊆ Y such
that y ∈ U ⊆ K. Clearly, conditions (iv) implies that all fibers of f are
quasi-compact (without any assumption on Y ). We need to show that f is
closed.
Let C ⊆ X be a closed subset. To check that f(C) is closed, we may work

locally on Y . Since property (iv) still holds if we replace Y by a subspace
(and X by the inverse image of that subspace), and since Y is locally compact,
we may assume without loss of generality that Y is quasi-compact, and —
using our assumption (iv) — that X is quasi-compact as well. Then C is also
quasi-compact, being closed in a quasi-compact space, and thus the image
f(C) is quasi-compact, as well. Since Y is Hausdorff and quasi-compact
subspaces of a Hausdorff space are necessarily closed, we see that f(C) is
closed in Y , as desired.

(1.6) Proper morphisms.

References: [GW1] Sections (12.13); [H] II.4; [Mu] II.7.
April 19,
2023To define proper morphisms of schemes, we also need the following ingredi-

ents. We have already defined quasi-compact morphisms, and a special case
of morphisms of finite type in Algebraic Geometry 1.

Definition 1.22. A morphism f : X → Y is called quasi-compact, if for
every quasi-compact open V ⊆ Y the inverse image f−1(V ) is quasi-compact.

Lemma 1.23. Let f : X → Y be a morphism of schemes. The following
are equivalent.

(i) The morphism f is quasi-compact.
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(ii) For every affine open subscheme V ⊆ Y , the inverse image f−1(V ) is
quasi-compact.

(iii) There exists a cover Y =
⋃

i Vi by affine open subschemes such that for
every i the inverse image f−1(Vi) is quasi-compact.

The difficult implication was Problem 46 in Algebraic Geometry 1. Note
that in part (iii) of the lemma it is important to consider a cover by affine
open subschemes.
Recall that an algebra B over a ring A is called of finite type (or equiv-

alently, finitely generated) if there exists n ≥ 0 and a surjective A-algebra
homomorphism A[X1, . . . , Xn] → B.

Definition 1.24.
(1) A morphism f : X → Y of schemes is called locally of finite type (or: X

is called a Y -scheme locally of finite type, of locally of finite type over
Y ), if for every affine open subscheme V ⊆ Y and every open subscheme
U ⊆ f−1(V ), the ring homomorphism Γ(V,OY ) → Γ(U,OX) induced by
the restriction U → V of f makes Γ(U,OX) a Γ(V,OY )-algebra of finite
type.

(2) A morphism f : X → Y of schemes is called of finite type (or: X is
called a Y -scheme of finite type, or of finite type over Y ), if f is locally
of finite type and quasi-compact.

Lemma 1.25. Let f : X → Y be a morphism of schemes. The following
are equivalent.
(i) The morphism f is locally of finite type.
(ii) There exist a cover Y =

⋃
i Vi by affine open subschemes, and for each i

a cover f−1(Vi) =
⋃

j Uij by affine open subschemes such that for all i, j

the Γ(Vi,OY )-algebra Γ(Uij ,OX) is of finite type.

Each of the properties of being locally of finite type, quasi-compact, and of
finite type is stable under composition and under base change.

Definition 1.26. Let f : X → Y be a morphism of schemes.
(1) The morphism f is called closed, if for every closed subset Z ⊆ X, the

image f(Z) is a closed subset of Y .
(2) The morphism f is called universally closed, if for every morphism

Y ′ → Y the base change X ×Y Y ′ → Y ′ of f along Y ′ is a closed
morphism.

(3) The morphism f is called proper, if it is separated, of finite type, and
universally closed.

Example 1.27.
(1) The affine line is not proper. More precisely, let k be a field, let Y =

Spec(k), and let X = A1
k. Let f : X → Y be the natural morphism.

Then f is separated, of finite type and closed, but (why?) not universally
closed.
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(2) Every closed immersion is proper.
(3) The property of being proper is stable under composition and under base

change.

(1.7) Projective schemes are proper.

Definition 1.28. Let S be a scheme. An S-scheme X is called projective
(we also say that X is projective over S, or that the morphism X → S
is projective), if there exist N ≥ 0 and a closed immersion X ↪→ PN

S of
S-schemes.

This definition of projective schemes differs slightly from the one in [GW1]
(Definition 13.68, which requires only that the above property holds locally
on S). If S is affine, they coincide, however, and the difference will not
be of any concern for us in this course. See [GW1], Summary 13.71 for a
discussion. The definition given here is the one used in [H] and in [Stacks].
Suppose that S = SpecR is an affine scheme. For any homogeneous

ideal I ⊆ R[X0, . . . , XN ], V+(I) is a closed subscheme of PN
S , and hence

in particular a projective S-scheme. One can show that for S affine every
projective scheme is isomorphic to a scheme of this form.
We will study this notion in more detail later (see Chapter 5).
Before we come to the main theorem of this section (Theorem 1.32), recall

that for a homogeneous ideal I ⊆ R[X0, . . . , Xn] (where R is some ring) we
have defined a closed subscheme V+(I) of Pn

R. We need the following two
results on closed subschemes of projective space.

Lemma 1.29. Let R be a ring, n ≥ 0, and let I ⊆ (X0, . . . , Xn) ⊆
R[X0, . . . , Xn] be a homogeneous ideal. Then V+(I) = ∅ if and only if
rad(I) ⊇ (X0, . . . , Xn).

Proposition 1.30. ([GW1] Proposition 13.24) Let R be a ring, n ≥ 0, and
let Z ⊆ Pn

R be a closed subscheme. Then there exists a homogeneous ideal
I ⊆ R[X0, . . . , Xn] such that Z ∼= V+(I).

In addition, we will use the following commutative algebra lemma which
is easily proved using the definitions of the localizations appearing in the
lemma. (We will later generalize the lemma when we prove that given an
OX -module F of finite type on a locally ringed space X, the support of F ,
i.e., the set of all points x such that the stalk Fx does not vanish, is closed.
See Proposition 2.18.)

Lemma 1.31. Let R be a ring, let p ⊂ R be a prime ideal and let M be a
finitely generated R-module. If the localization Mp vanishes, then there exists
s ∈ R \ p such that already the localization Ms is zero.

Theorem 1.32. ([GW1] Theorem 13.40) Every projective morphism of
schemes is proper.
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Sketch of proof. Since closed immersions are proper, it is enough to prove
that projective space is proper, i.e., that for every scheme S the morphism
Pn
S → S is closed. Since this property can be checked locally on S, we may

assume that S = SpecR is affine.
If Z ⊆ Pn

S is a closed subset, there exists a closed subscheme with underlying
topological space Z, and hence (Proposition 1.30) a homogeneous ideal
I ⊆ R[X0, . . . , Xn] such that V+(I) has underlying topological space Z. We
need to show that the image of V+(I) in S is closed, or equivalently, that its
complement U ⊆ S is open.
Denote by f the composition V+(I) ↪→ Pn

S → S, and let x ∈ U . Then the
scheme-theoretic fiber f−1(x) = V+(I)×U Specκ(x) is empty. We want to
show that there exists s ∈ R such that x ∈ D(s) ⊆ U . The inclusion D(s) ⊆
U amounts to saying that f−1(D(s)) = ∅. To translate the problem into a
commutative algebra statement, let I be the image of I in κ(x)[X0, . . . , Xn]. It
follows from the assumption f−1(x) = ∅ and Lemma 1.29 that rad(I) contains
the ideal (X0, . . . , Xn) (⊂ κ(x)[X0, . . . , Xn]). Thus for d sufficiently large,
for the degree d components we have Id = (X0, . . . , Xn)d. By the lemma of
Nakayama, we obtain Id⊗OS,x = (X0, . . . , Xn)d ⊆ OS,x[X0, . . . , Xn]. It then
follows that the analogous equality holds already over the localization of R
with respect to a suitable element s not contained in the prime ideal x. □

April 24,
2023 Example 1.33. (The resultant of polynomials) Let k be an algebraically

closed field (with some “obvious” adaptations, the results below hold over
an arbitrary field). Let m,n ∈ N. We identify the set A of pairs (f, g) of
monic polynomials with the set of k-valued points of the affine space Am+n

k =

Spec k[S0, . . . , Sm−1, T0, . . . , Tn−1], where a tuple (si, tj) ∈ km+n = Am+n
k (k)

corresponds to
(
Xm + sm−1X

m−1 + · · ·+ s0, X
n + tn−1X

n−1 + · · ·+ t0
)
.

Viewing A as the set of closed points of Am+n
k , A is equipped with a

topology, namely the topology induced by the Zariski topology.
Let Z ⊂ A be the subset consisting of those pairs (f, g) such that f and g

have a common zero in k. Write R = k[S0, . . . , Sm−1, T0, . . . , Tn−1].

Claim. The set Z is a closed subset.

Proof of claim. Let

F =Xm + Sm−1X
m−1 + · · ·+ S1X + S0,

G =Xn + Tn−1X
n−1 + · · ·+ T1X + T0 ∈ R[X]

be the “universal” monic polynomials, and let

F̃ =Xm + Sm−1X
m−1Y + · · ·+ S1XY

m−1 + S0Y
m,

G̃ =Xn + Tn−1X
n−1Y + · · ·+ T1XY

n−1 + T0Y
n ∈ R[X,Y ]

be their homogenizations with respect to a second variable Y .
Let p : P1

R → SpecR be the projection. Then Z = p(V+(F̃ , G̃)) ∩ A. By

the above theorem, p(V+(F̃ , G̃)) is closed in Am+n
k , hence the claim follows.
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To see the equality, fix x = (f, g) ∈ A and let f̃ , g̃ be their homogenizations.

Then f and g have a common zero in k if and only if V+(f̃ , g̃) ̸= ∅ (inside
P1
κ(x)). Note that the point (1 : 0), the “point at infinity” in P1 is never a

zero of f̃ or g̃. Since V+(f̃ , g̃) = V+(F̃ , G̃)×SpecR Specκ(x) can be identified
with the (scheme-theoretic) fiber of p over the point x, this proves the desired
description of Z.
More precisely one can show (using other methods) that Z is the zero

locus of a single polynomial in R, the so-called resultant of a pair of monic
polynomials. See [GW1] Section (B.20) for a sketch and further references,
or [Bo] Abschnitt 4.4 for a detailed account in German.
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2. OX-modules

General references: [GW1] Ch. 7, [H] II.5.

Definition and basic properties.

(2.1) Definition of OX-modules.

Definition 2.1. Let (X,OX) be a ringed space. An OX-module is a sheaf
F of abelian groups on X together with maps

OX(U)× F (U) → F (U) for each open U ⊆ X

giving each F (U) the structure of an OX(U)-module, and which are compat-
ible with the restriction maps for open subsets U ′ ⊆ U ⊆ X.
An OX-module homomorphism F → G between OX-modules F , G on X

is a sheaf morphism F → G such that for all open subsets U ⊆ X, the map
F (U) → G (U) is a homomorphism of OX(U)-modules. We denote the set
of OX-module homomorphisms from F to G by HomOX

(F ,G ); this is an
OX(X)-module (and in particular an abelian group).

We obtain the category (OX -Mod) of OX -modules.

Remark 2.2. If F is an OX -module and x ∈ X, then the stalk Fx carries a
natural OX,x-module structure. The κ(x)-vector space F (x) := Fx⊗OXx

κ(x)
is called the fiber of F over x.

Constructions, examples 2.3. Let X be a ringed space, F an OX -
module.
(1) OX ,
(2) submodules and quotients,
(3) ⊕,

∏
, −⊗OX

−, (filtered) colimits,
(4) kernels, cokernels, image, exactness; these are compatible with passing

to the stalks, and exactness can be checked on stalks,
(5) restriction to open subsets: FX|U , U ⊆ X open,

(6) The Hom sheaf HomOX
(F ,G ), defined by U 7→ HomOU

(F|U ,G|U )
(this is a sheaf, by “gluing of morphisms of sheaves”), duals: F∨ =
HomOX

(F ,OX).

The principle for most of these constructions is the following: Use the
corresponding construction for modules over a ring for sections on opens of X,
and then sheafify, if necessary. For products (and hence also for finite direct
sums), kernels, and the Hom sheaf, the sheafification step is not required.
For quotients, infinite direct sums, tensor products, colimits, cokernels and
images, in general the presheaf obtained from the corresponding construction
for modules is not a sheaf, so one has to sheafify.
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The operations of taking kernels, cokernels, images, direct sums, tensor
products, colimits are compatible with passing to stalks. (For products
and the Hom sheaf, this does not hold in general. But compare Proposi-
tion 2.17/Problem 15.)
The category of OX -modules is an abelian category.

Definition 2.4. Let F be an OX-module on the ringed space X. We call
F
(a) free, if it is isomorphic to

⊕
i∈I OX for some set I,

(b) locally free, if there exists an open covering X =
⋃

j Uj of X such that
F|Uj

is a free OUj -module for each j.

The rank of a free OX-module is the cardinality of I as above (we usually
regard it in Z∪{∞}, without making a distinction between infinite cardinals).
The rank of a locally free OX-module is a function X → Z ∪ {∞} which is
locally constant on X (i.e., on each connected component of X, there is an
integer giving the rank).
An invertible sheaf or line bundle on X is a locally free sheaf of rank 1.

For L invertible, there is a natural isomorphism L ⊗OX
L ∨ ∼= OX (whence

the name), cf. Problem 14. Hence ⊗ induces a group structure on the set of
isomorphism classes of invertible sheaves in X. The resulting group is called
the Picard group of X and denoted by Pic(X).

(2.2) Inverse image.
April 26,
2023Definition 2.5. Let f : X → Y be a morphism of ringed spaces, and let F

be an OX-module. Then f∗F carries a natural OY -module structure and is
called the direct image or push-forward of F under f .

Definition 2.6. Let f : X → Y be a morphism of ringed spaces, F an
OY -module.
We define

f∗F := f−1F ⊗f−1OY
OX .

For x ∈ X, we have (f∗F )x
∼= Ff(x) ⊗OY,f(x)

OX,x.

We obtain functors f∗, f
∗ between the categories of OX -modules and

OY -modules.

Proposition 2.7. Let f : X → Y be a morphism of ringed spaces. The
functors f∗ is right adjoint to the functor f∗:

HomOX
(f∗G ,F ) ∼= HomOY

(G , f∗F )

for all OX-modules F , all OY -modules G , functorially in F and G .
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Quasi-coherent OX-modules.

(2.3) The OSpecA-module attached to an A-module M .

Definition 2.8. Let A be a ring and M an A-module. Then setting

D(f) 7→Mf , f ∈ A,

is well-defined and defines a sheaf on the basis of principal open sets in SpecA.

We denote the corresponding sheaf on SpecA by M̃ . It is an OSpecA-module
(by viewing each Mf as an Af -module in the natural way).

In the situation of the definition, the stalk of M̃ at a point p ∈ SpecA is
the localization Mp.

Remark 2.9. For an affine scheme X, in general not every OX -module has
the above form. We will investigate this more closely soon.

May 3,
2023 Proposition 2.10. Let A be a ring, and let M , N be A-modules. Then the

maps

HomA(M,N) → HomOSpecA
(M̃, Ñ)

given by

φ 7→ φ̃ := (φf : Mf → Nf )f
and, in the other direction,

Φ 7→ Γ(SpecA,Φ),

are inverse to each other. In other words, ·̃ is a fully faithful functor from
the category of A-modules to the category of OSpecA-modules.

By applying the proposition to M = A, we also see that for an A-module

N , Ñ is zero if and only if N is zero.

The construction M 7→ M̃ is compatible with exactness, kernels, cokernels,
images, direct sums, filtered inductive limits. (Cf. [GW1] Prop. 7.14 for a
more precise statement.)

(2.4) Quasi-coherent modules.

Definition 2.11. Let X be a ringed space. An OX-module F is called
quasi-coherent, if every x ∈ X has an open neighborhood U such that there
exists an exact sequence

O
(J)
U → O

(I)
U → F|U → 0

for suitable (possibly infinite) index sets I, J .

For a morphism f : X → Y of ringed spaces and a quasi-coherent OY -
module G , the pull-back f∗G is a quasi-coherent OX -module (since f−1 is
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exact and tensor product is a right exact functor). The direct image f∗
preserves the property of quasi-coherence (only) under certain conditions.
Locally free OX -modules are quasi-coherent.

Clearly, for a ring A and an A-module M , M̃ is a quasi-coherent OSpecA-
module. We will see below that the converse is true as well:
For a ringed space X and f ∈ Γ(X,OX), we write Xf := {x ∈ X; fx ∈

O×
X,x}, an open subset of X. We obtain a homomorphism

Γ(X,F )f → Γ(Xf ,F )

for every OX -module F .

Theorem 2.12. Let X be a scheme and F an OX-module. The following
are equivalent:
(i) For every affine open SpecA = U ⊆ X, there exists an A-module M

such that F|U ∼= M̃ .
(ii) There exists a covering X =

⋃
i Ui by affine open subschemes Ui =

SpecAi and Ai-modules Mi such that F|Ui
∼= M̃i for all i.

(iii) The OX-module F is quasi-coherent.
(iv) For every affine open SpecA = U ⊆ X and every f ∈ A, the homomor-

phism Γ(U,F )f → Γ(D(f),F ) is an isomorphism.

Note that we can phrase (iv) equivalently as saying that the natural map
Γ(U,F )∼ → F|U is an isomorphism.

Sketch of proof. The implications (iv) ⇒ (i) ⇒ (ii) ⇒ (iii) are relatively easy.
To show (iii) ⇒ (iv), we may assume X = U = SpecA and we can cover X
be finitely many principal open subsets D(gi) such that F|D(gi) is of the form

M̃i. In particular, (iv) holds for F|D(gi), and similarly for FD(gigj). Now use

the sheaf property of F to conclude that (iv) holds for U itself. □
May 8,
2023Corollary 2.13. Let A be a ring, X = SpecA. The functor ·̃ induces an

exact equivalence between the categories of A-modules and of quasi-coherent
OX-modules.

The statements of the following corollary can be checked locally on X,
hence it is enough to show the corresponding claims for modules in the image
of the ·̃ functor. For Part (3) use that tensor product is compatible with
localization.

Corollary 2.14. Let X be a scheme.
(1) Kernels, cokernels, images of OX-module homomorphisms between quasi-

coherent OX-modules are quasi-coherent.
(2) Direct sums of quasi-coherent OX-modules are quasi-coherent.
(3) Let F , G be quasi-coherent OX-module. Then F⊗OX

G is quasi-coherent,
and for every affine open U ⊆ X we have

Γ(U,F ⊗ G ) = Γ(U,F )⊗ Γ(U,G ).
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In particular, by (1) and (2) the category of quasi-coherent OX-module is an
abelian category, and the inclusion functor into the category of all OX-modules
preserves kernels and cokernels and direct sums.

(2.5) Direct and inverse image of quasi-coherent OX-module.

Proposition 2.15. Let X = SpecB, Y = SpecA be affine schemes, and let
f : X → Y be a scheme morphism.

(1) Let N be an B-module, then f∗(Ñ) = Ñ[A] where N[A] is N , considered
as an A-module via Γ(f) : A→ B.

(2) Let M be an A-module, then f∗(M̃) = M̃ ⊗A B.

Sketch of proof. The first part can easily be checked directly. For the second

part, use that we already know that f∗M̃ is quasi-coherent, the Yoneda
lemma and adjunction (or in other words, uniqueness of the left adjoint
functor of f∗). □

(2.6) Finiteness conditions.

Definition 2.16. Let X be a ringed space. We say that an OX-module F
is of finite type (or of finite presentation, resp.), if every x ∈ X has an open
neighborhood U ⊆ X such that there exists n ≥ 0 (or m,n ≥ 0, resp.) and a
short exact sequence

On
X → F → 0

(or
Om

X → On
X → F → 0,

resp.).

On an affine scheme, this coincides with the corresponding definitions

in terms of modules (via M 7→ M̃). Note that every OX -module of finite
presentation is quasi-coherent. On a noetherian scheme, every quasi-coherent
OX -module of finite type is of finite presentation.

Proposition 2.17. Let X be a ringed space and let F be an OX-module of
finite presentation.
(1) For all x ∈ X and for each OX-module G , the canonical homomorphism

of OX,x-modules

HomOX
(F ,G )x → HomOX,x

(Fx,Gx)

is bijective.
(2) Let F and G be OX-modules of finite presentation. Let x ∈ X be a point

and let θ : Fx
∼→ Gx be an isomorphism of OX,x-modules. Then there

exists an open neighborhood U of x and an isomorphism u : F |U
∼→ G |U

of OU -modules with ux = θ.
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Proof. Problem 15. □

Proposition 2.18. Let X be a ringed space, and let F be an OX-module of
finite type. Then the support

Supp(F ) = {x ∈ X; Fx ̸= 0}

of F is a closed subset of X.

Proof. Problem 18. □

(2.7) Closed subschemes and quasi-coherent ideal sheaves.
May 10,
2023Proposition 2.19. Let X be a scheme. An ideal sheaf I ⊆ OX defines a

closed subscheme if and only if I is a quasi-coherent OX-module.

The point here is that both properties can be checked locally on X, and
that for affine schemes we have already shown this statement (which amounts
to saying that every closed subscheme of an affine scheme SpecA has the
form SpecA/a for some ideal a ⊆ A.
We hence obtain an inclusion-reversing bijection between the set of closed

subschemes of a scheme X and the set of quasi-coherent ideal sheaves in OX ,
mapping

• a quasi-coherent ideal sheaf I to Z := (Supp(OX/I ), i−1(OX/I )),
where i : Supp(OX/I ) → X denotes the inclusion,

• a closed subscheme Z ⊆ X to Ker(OX → i∗OZ), where i : Z → X
denotes the inclusion morphism.

We denote the closed subscheme corresponding to a quasi-coherent ideal
sheaf I by V (I ).

(2.8) Locally free sheaves on affine schemes.

There is an obvious “commutative algebra way” of writing down, for an

A-module M , the condition that M̃ is locally free.

Theorem 2.20. Let A be a ring and M an A-module. Consider the
following properties of M :

(i) M̃ is a locally free OSpecA-module.
(ii) M is locally free, i.e., there exist f1, . . . , fn ∈ A generating the unit ideal

such that for all i, the Afi-module Mfi is free.
(iii) For all p ∈ SpecA, the Ap-module Mp is free.
(iv) The A-module M is flat.

(1) We have the implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv).
(2) If M is an A-module of finite presentation, then all the four properties

are equivalent.
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Proof. Part (1) is easy. Part (2) is more difficult. The implication (iii) ⇒
(ii), for finitely presented M , follows from Prop. 2.17. See [GW1] Prop. 7.40.
There are several ways to show (iv) ⇒ (iii). One can proceed in a fairly

elementary fashion, using the “equational criterion of flatness”, see [M2]
Theorem 7.10, Theorem 7.12. Alternatively, using the Tor functor (the “left
derived functor of the tensor product”), one can proceed as follows. We may
assume that A is local with maximal ideal m. Lift the elements of an A/m-
basis of M/mM to M . By the Lemma of Nakayama this induces a surjection
An →M . Let K denote its kernel. We want to show that K = 0. Since M is
of finite presentation, K is a finitely generated A-module ([M2] Theorem 2.6).
Furthermore, the flatness of M implies that TorA1 (A/m,M) = 0. Therefore
the short exact sequence

0 −→ K −→ An −→M −→ 0

remains exact after tensoring −⊗A A/m. Since by construction the homo-
morphism An →M becomes an isomorphism after tensoring with the residue
class field, this shows that K ⊗A A/m. Applying the Lemma of Nakayama
again, we obtain that K = 0, as desired. □

There is an obvious analogous theorem for OX -module on a scheme X,
where we define

Definition 2.21. Let X be a scheme. An OX-module F is called flat, if
for all x ∈ X the stalk Fx is a flat OX,x-module.
More generally, given an OX-module F and a morphism f : X → Y we

say that F is f-flat or flat over Y , if for all x ∈ X the stalk Fx is a flat

OY,f(x)-module (via f ♯x : OY,f(x) → OX,x).

If A is a domain, then every flat A-module M is torsion-free (i.e., multipli-
cation by s is injective for all s ∈ A \ {0}). The converse holds only rarely;
it does hold if A is a principal ideal domain and M is finitely generated.

Remark 2.22.
(1) Let A be a principal ideal domain. Then every finitely generated locally

free (in the sense of condition (i′) in the theorem) A-module is free. (Use
the structure theorem for finitely generated modules over principal ideal
domains.)

(2) It is a difficult theorem (conjectured by Serre, proved independently by
Quillen and Suslin) that every locally free sheaf of finite type on An

k , k a
field, is free. The same statement holds even for k a discrete valuation
ring.

(3) It will not be relevant in the course, but in fact in the previous two items
the hypothesis of finite type can be omitted. In fact, whenever R is a ring
which is noetherian and such that SpecR is connected, then every locally
free R-module which is not finitely generated is free. One way to show
this is to combine the paper [Ba] by H. Bass with the difficult theorem
that the property of a module of being “projective” can be checked
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Zariski-locally on SpecA ([Stacks] 058B), which shows that all locally
free R-modules, finitely generated or not, are projective. Maybe there is
also a more direct way, without talking about projective modules?

(4) On the other hand, even for an affine scheme X, a locally free OX -module
is usually not a projective object in the category (OX -Mod).

(5) Let A be a noetherian unique factorization domain. Then every invertible
sheaf on SpecA is free.

(6) See the answers to this question (mathoverflow.net/q/54356) for ex-
amples of non-free locally free modules over SpecA for factorial (and
even, in addition, regular) noetherian rings A.

(7) Let A be a domain, and let M be a locally free A-module of rank 1.
Then M is isomorphic to a fractional ideal, i.e., to a finitely generated
sub-A-module of K := Frac(A). (Cf. Problem 8 for a converse statement
in the case that A is a Dedekind domain.)

https://mathoverflow.net/q/54356
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3. Line bundles and divisors

General references: [GW1] Ch. 11, in particular (11.9), (11.13); [H] II.6.

A divisor on a scheme X should be thought of an object that encodes a
“configuration of zeros and poles (with multiplicities)” that a function on X
could have. Below, we will see two ways to make this precise and compare
them.
Let X be an integral (i.e., reduced and irreducible) scheme. We denote by

K(X) the field of rational functions of X.
Later we will impose the additional condition that X is noetherian and

that all local rings OX,x are unique factorization domains.
An important example that is good to keep in mind is the case of a

Dedekind scheme of dimension 1, i.e., X is a noetherian integral scheme
such that all points except for the generic point are closed, and such that
for every closed point x ∈ X the local ring OX,x is a principal ideal domain
(in other words: all local rings are discrete valuation rings), and the generic
point is not closed itself. If a Dedekind scheme X is a k-scheme of finite type
for some algebraically closed (or at least perfect) field k, then we call X a
smooth algebraic curve over k.

Cartier divisors.

(3.1) Cartier divisors: Definition.

Denote by K(X) = OX,η the field of rational functions on the integral
scheme X, where η ∈ X is the generic point. We denote by KX the constant
sheaf with value K(X), i.e., KX(U) = K(X) for all ∅ ≠ U ⊆ X open. Since
X is irreducible, this is a sheaf.
The notion of Cartier divisor encodes a zero/pole configuration by specify-

ing, locally on X, functions with the desired zeros and poles. Since functions
which are units in Γ(U,OX) should be regarded as having no zeros and/or
poles on U , we consider functions only up to units.

Definition 3.1. A Cartier divisor on X is given by a tuple (Ui, fi)i, where
X =

⋃
i Ui is an open cover, fi ∈ K(X)×, and fi/fj ∈ Γ(Ui ∩ UJ ,OX)× for

all i, j. Two such tuples (Ui, fi)i, (V j, gj)j give rise to the same divisor, if

fig
−1
j ∈ Γ(Ui ∩ Vj ,OX)× for all i, j.

May 15,
2023 With addition given by

(Ui, fi)i + (Vj , gj)j = (Ui ∩ Vj , figj)i,j

the set Div(X) of all Cartier divisors on X is an abelian group.

Remark 3.2. We have Div(X) = Γ(X,K ×
X /O×

X).
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Definition 3.3. A Cartier divisor of the form (X, f), f ∈ K(X)×, is called
a principal divisor. Divisors D, D′ on X are called linearly equivalent, if
D −D′ is a principal divisor. The set of principal divisors is a subgroup of
Div(X) and the quotient DivCl(X) of Div(X) by this subgroup is called the
divisor class group of X.

(3.2) The line bundle attached to a Cartier divisor.

Let D be a Cartier divisor on X. We define an invertible OX -module
OX(D) as follows:

Γ(U,OX(D)) = {f ∈ K(X);∀i : fif ∈ Γ(U∩Ui,OX)} for ∅ ≠ U ⊆ X open.

For each i, we have OX(D)|Ui
= f−1

i OUi ⊂ KX , so multiplication by fi
gives an OUi-module isomorphism OX(D)|Ui

∼= OUi .

Proposition 3.4. The map D 7→ OD(X) induces group isomorphisms
Div(X) ∼= {L ⊂ KX invertible OX-module} and DivCl(X) ∼= Pic(X).

Sketch of proof. To construct an inverse of the map D 7→ OD(X), take
L ⊆ KX invertible and choose an open cover X =

⋃
Ui such that L|Ui

is

trivial for each i. Then necessarily L|Ui
= f−1

i OUi for some fi ∈ K(X)×

(namely, f−1
i is the image of 1 ∈ Γ(Ui,OX) under the map Γ(Ui,OX) → K(X)

induced by the composition OUi
∼= L|Ui

→ KX). We then map L to the
Cartier divisor (Ui, fi)i. One checks that this map is well-defined (i.e.,
independent of the choice of cover and of the choice of the elements fi) and
that the two maps are inverse to each other.
It remains to check that OD(X) is free if and only if D is principal (Problem

28) and that every invertible OX -module L can be embedded as a submodule
into KX . This is easy if X is affine. In the general case, let U ⊆ X be open
affine. We claim that every embedding L|U ↪→ KU extends uniquely to an
embedding L ↪→ KX . Because of the uniqueness, we can work locally on X
(and afterwards use gluing of sheaf homomorphisms), and therefore restrict
to the case L = OX . The embedding OU = L|U ↪→ KU then corresponds to

a section s ∈ Γ(U,KU )
×. But Γ(U,KU ) = K(X) = Γ(X,KX), so the claim

follows. (See [GW1] Prop. 11.29 for more details and a variant which does
not require X to be integral.) □

To get a more geometric view on divisors, a first step is the following
definition of the support of a divisor. We will carry this further by introducing
the notion of Weil divisor, see below, and relating it to Cartier divisors.

Definition 3.5. The support of a Cartier divisor D is

Supp(D) = {x ∈ X; fi,x ∈ K(X)× \ O×
X,x (where x ∈ Ui)},

a proper closed subset of X.
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Weil divisors.
May 17,
2023 Now let X be a noetherian integral scheme, such that all local rings

OX,x are unique factorization domains. (The theory can be set up in more
generality, see [GW1] Section (11.13).) This is true for example if all local
rings of X are regular local rings.
(Recall that a noetherian local ring A is called regular, if its maximal ideal

can be generated by dimA elements, where dimA is the Krull dimension of
A. The Krull dimension is the supremum of the lengths of inclusion chains
of prime ideals in A. For instance, a local ring A has dimension 0 if and
only if its maximal ideal is also a minimal prime ideal (and hence the unique
prime ideal of A). A local ring A has dimension 1 if it maximal ideal is not
a minimal prime ideal, but all non-maximal prime ideals are minimal prime
ideals. A local domain has dimension 1 if and only if it has precisely two
prime ideals.)

(3.3) Definition of Weil divisors.

Let Z1(X) denote the free abelian group on maximal proper integral
subschemes of X (equivalently: those integral subschemes Z ⊂ X such that
for the generic point ηZ ∈ Z we have dimOX,ηZ = 1). We say that Z has
codimension 1. We also write OX,Z := OX,ηZ .
By our assumptions on X, all the rings OX,Z are discrete valuation rings.

(Since they are noetherian domains of dimension 1 by assumption, it is
equivalent to require that they are integrally closed, or factorial, or that
they are regular.) We denote by vZ : K(X)× → Z the corresponding discrete
valuation on K, and set vZ(0) = ∞.

Definition 3.6. An element of Z1(X) is called a Weil divisor. We write
Weil divisors as finite “formal sums”

∑
nZ [Z] where Z ⊂ X runs through

the integral closed subschemes of X of codimension 1.

For f ∈ K(X)×, we define the divisor attached to f as

div(f) =
∑
Z

vZ(f)[Z].

Note that the sum is finite, i.e., vZ(f) = 0 for all but finitely many Z. In
fact, for U ⊆ X affine open, the complement X \ U has only finitely many
irreducible components, so we may discard it and replace X by U . Then
assume X = SpecA is affine and write f = g/h with g, h ∈ A. Then vZ(f)
can only be ̸= 0, if Z is an irreducible component of V (f) ∪ V (g). Since
this closed subscheme of the noetherian scheme X has only finitely many
irreducible components (being itself noetherian), we are done.
Weil divisors of the form div(f) are called principal Weil divisors. Two

Weil divisors are called linearly equivalent, if their difference is a principal
divisor.
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Definition 3.7.
(1) A Weil divisor

∑
Z nZ [Z] is called effective, if nZ ≥ 0 for all Z.

(2) A Cartier divisor D is called effective, if OX ⊆ OX(D) (inside KX), or
equivalently, if OX(−D) ⊆ OX is an ideal of OX .

(3.4) Weil divisors vs. Cartier divisors.

Generalizing the definition of principal divisors, we can construct a group
homomorphism cyc: Div(X) → Z1(X) as follows:

D = (Ui, fi) 7→
∑

vZ(fiZ )[Z],

where for each Z we choose an index iZ so that UiZ contains the generic
point of Z (equivalently: UiZ ∩ Z ̸= ∅).
To prove that cyc is an isomorphism Div(X) ∼= Z1(X), we need the

following facts from commutative algebra. (See, e.g., [M2] Theorem 11.5,
Theorem 20.1.) Recall that a domain A is called integrally closed, or normal,
if every element of the field of fractions of A which is the zero of a monic
polynomial with coefficients in A lies in A. Every UFD is integrally closed.
Furthermore, a domain A is integrally closed if and only if all localizations
Ap at prime ideals p ∈ SpecA are integrally closed. So for X as above, and
a non-empty affine open U ⊆ X, the ring Γ(U,OX) is integrally closed (in
its field of fractions K(X)).

Lemma 3.8.
(1) Let A be an integrally closed domain. Then A is equal to the intersection

of all localizations Ap (in Frac(A)), where p runs through the set of
minimal prime ideals of A.

(2) Let A be a local unique factorization domain. Then every prime ideal
p ̸= 0 which is minimal among all prime ideals ̸= 0 of A is a principal
ideal.

Proposition 3.9. The map cyc is a group isomorphism Div(X) ∼= Z1(X).
Under this isomorphism, the subgroups of principal divisors on each side
correspond to each other, whence it induces an isomorphism DivCl(X) ∼=
Cl(X).

Sketch of proof. Injectivity. If D is a Weil divisor or a Cartier divisor such
that D and −D are effective, then D is trivial. It therefore suffices to
show that the inverse image of the subset of effective Weil divisors under
the homomorphism cyc consists of effective Cartier divisors. So let D be
a Cartier divisor on X such that cyc(D) is effective. We can check that
D is effective locally on X, so we may assume that X = SpecA for an
integrally closed domain A, and that D is principal, say given by (X, f). By
assumption f ∈ K(X) is contained in Ap for every p ∈ SpecA, and it follows
from Lemma 3.8 Part (1) that f ∈ A, as desired.
Surjectivity. We construct an inverse to the map cyc. If Z ⊂ X is an May 22,

2023
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integral closed subscheme of X of codimension 1 with corresponding ideal
sheaf IZ ⊆ OX , then for every x ∈ X, IZ,x is a principal ideal in OX,x by
Lemma 3.8 Part (2). Using Proposition 2.17, we find an affine open cover
(Ui)i of X together with elements fi ∈ K(X) such that IZ|Ui

= fiOX (inside
KX), for each i. We then map [Z] to the Cartier divisor (Ui, fi)i (well-defined
since elements in a domain that generate the same principal ideal differ at
most by a unit), and extend this construction to a map d : Z1(X) → Div(X)
by linearity. By construction we have cyc ◦d = id, and this implies that cyc
is surjective (and hence bijective with inverse d).
We can phrase the definition of principal Weil divisor as saying that it is

the image under cyc of a principal Cartier divisor. It is therefore clear that
we also obtain an isomorphism DivCl(X) ∼= Cl(X). □

We thus have identifications

Pic(X) ∼= DivCl(X) ∼= Cl(X).

Example 3.10.

(1) For any UFD A, Pic(A) = 1 as remarked above. In particular, all divisors
on affine space An

k over a field (or over any UFD) k are principal.

(2) Let k be a field. As shown on the problem sheets, Pic(P1
k)

∼= Z. We will
see below that Pic(Pn

k)
∼= Z for every n ≥ 1.

The Picard group or equivalently the divisor class group of an integral scheme
X contains interesting information about X, but is often not easy to compute.

(3.5) The theorem of Riemann and Roch.

No proofs were given in the lecture at this point for the following results.
Reference: [H] IV.1.May 24,

2023

Now let X be a Dedekind scheme which is a scheme of finite type over an
algebraically closed field k. In view of Proposition 3.9, we identify Cartier
and Weil divisors. In addition we assume that X is projective, i.e., that
there exist n ≥ 1 and a closed immersion X ↪→ Pn

k .
For a (Weil) divisor D =

∑
Z nZ [Z] we define the degree deg(D) of D as

deg(D) :=
∑

Z nZ . We obtain a group homomorphism Z1(X) → Z. Under
our assumption that X is a closed subscheme of some projective space, one
can show that this homomorphism factors through Cl(X):

Theorem 3.11. Let f ∈ K(X). Then deg(div(f)) = 0.

This means that the degree homomorphism Div(X) → Z factors through
the divisor class group. In particular, we can speak of the degree of a line
bundle, and we denote the degree of L by deg(L ).
To state the famous Theorem of Riemann–Roch, we introduce the following

notation. For a divisor D we write ℓ(D) = dimk Γ(X,OX(D)).
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Proposition 3.12. For each D, ℓ(D) is finite.

If ℓ(D) ≥ 0, then deg(D) ≥ 0. In fact, it was shown that whenever
ℓ(D) ̸= 0, then D is linearly equivalent to an effective divisor D′, and then
deg(D) = deg(D′) ≥ 0.

Theorem 3.13. (Riemann-Roch) For X as above, there exist g ∈ Z≥0

and K ∈ Div(X) such that for every divisor D on X, we have

ℓ(D)− ℓ(K −D) = deg(D) + 1− g.

Corollary 3.14. In the above situation, we have

(1) ℓ(K) = g,

(2) deg(K) = 2g − 2,

(3) for every D with deg(D) > 2g − 2, we have ℓ(D) = deg(D) + 1− g.

Proof. The corollary is easy to prove with the Theorem of Riemann-Roch at
hand. In fact, for (1) use the theorem with D = 0 the trivial divisor, for (2)
use D = K, and for (3) use that under the assumption there deg(K−D) < 0,
whence ℓ(K −D) = 0, as remarked before. □

The number g is called the genus of the curve X. Part (3) of the corollary
shows that it is uniquely determined by X.

Remark 3.15. The linear equivalence class of the canonical divisor K is
uniquely determined. In fact, assume that K and K ′ are divisors which both
have the property of a canonical divisor as in the Riemann-Roch theorem.
Using the theorem and the corollary, one computes that ℓ(K − K ′) > 0
and ℓ(K ′ −K) > 0. As was shown on the problem sheet, this implies that
OX(K−K ′) is trivial, or in other words that K and K ′ have the same divisor
class.

For the projective line P1
k, it is easy to prove the Theorem of Riemann-Roch

by direct computations. It has genus 0. One can show that every X of genus
0 is isomorphic to P1

k. (But if k is not assumed to be algebraically closed,
then there may exist X as above of genus 0 which are not isomorphic to P1

k.)
For X as above which is of the form V+(f) ⊂ P2

k, there is the following
formula for the genus:

Proposition 3.16. Let X as above be of the form V+(f) ⊂ P2
k for a

homogeneous polynomial f of degree d. Then the genus g of X is given by

g =
(d− 1)(d− 2)

2
.

For example, elliptic curves (which are defined by a homogeneous polyno-
mial of degree 3) have genus 1.
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(3.6) Line bundles on Pn
k .

References: [GW1], Ch. 8, Ch. 11, in particular Example 11.43, (8.5); [H] II.6,
II.7.

We want to compute the Picard group of projective space over a field. To
this end, we will use the following general proposition.

Proposition 3.17. Let X be a noetherian integral scheme such that all
local rings OX,x are unique factorization domains. Let U ⊆ X be an open
subscheme, and let Z1, . . . , Zr be those irreducible components of X \ U
that are of codimension 1 inside X. We consider the Zi as integral closed
subschemes of X. Then we have a short exact sequence

0 →
⊕
i

Z[Zi] → Z1(X) → Z1(U) → 0

which induces an exact sequence⊕
i

Z[Zi] → Cl(X) → Cl(U) → 0.

Proof. It is clear that we have the first short exact sequence when we think
of integral closed subschemes in terms of their generic points. It is easy to
check that the “restriction map” Z1(X) → Z1(U) induces a homomorphism
between the class groups, and this yields the second exact sequence. □

May 31,
2023 In terms of the identifications of the divisor class groups with the Picard

groups of X and of U , the map Pic(X) → Pic(U) in the proposition is just
the restriction of line bundles from X to the open subscheme U .
Now let R be a ring and fix n ≥ 1. We cover Pn

R by the standard charts
Ui := D+(Xi), as usual, and write Uij := Ui ∩ Uj . For d ∈ Z, multiplication

by the elements (Xi/Xj)
d ∈ Γ(Uij ,OPn

R
)× defines isomorphisms OUi|Uij

→
OUj |Uij

which give rise to a gluing datum of the OUi-modules OUi . By gluing

of sheaves, we obtain a line bundle OPn
R
(d). (Cf. Problems 23, 24, 25 in the

case n = 1.) To shorten the notation, we sometimes just write O(d), when
the space is clear from the context.

Lemma 3.18. We obtain a group homomorphism Z → Pic(Pn
R), d 7→ O(d).

Proposition 3.19. Writing R[X0, . . . , Xn]d for the submodule of homoge-
neous polynomials of degree d (with R[X0, . . . , Xn]d = 0 for d < 0), we have
natural isomorphisms

Γ(Pn
R,O(d)) ∼= R[X0, . . . , Xn]d

for all d ∈ Z.
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Proof. We can make the gluing construction for O(d) explicit by identifying

Γ(D+(Xi),O(d)) with Xd
i R
[
X0
Xi
, . . . , Xn

Xi

]
, and correspondingly

Γ(D+(XiXj),O(d)) = Xd
i R

[
X0

Xi
, . . . ,

Xn

Xi
,
Xi

Xj

]
= Xd

jR

[
X0

Xj
, . . . ,

Xn

Xj
,
Xj

Xi

]
(inside R[X0, . . . , Xn, X

−1
0 , . . . , X−1

n ]). This means that the restriction map is
just the inclusion map. (If R is a domain, then this describes an embedding of
O(d) into the constant sheaf KPn

R
with values the field of rational functions.)

With this description, since the relevant restriction maps are injective, we
can identify Γ(Pn

R,O(d)) with the intersection

n⋂
i=0

Xd
i R

[
X0

Xi
, . . . ,

Xn

Xi

]
.

One checks that this intersection is R[X0, . . . , Xn]d, as claimed. □

Corollary 3.20. The above homomorphism Z → Pic(Pn
R), d 7→ O(d), is

injective.

Now let R = k be a field (in fact, the same arguments apply to any
noetherian unique factorization domain k). Then Pn

k is a noetherian integral
scheme all of whose local rings are unique factorization domains, so we can
talk about Cartier divisors and about Weil divisors, and identify the two
notions via the cycle map as in Proposition 3.9.

Corollary 3.21. Let k be a field and let n ≥ 1. Then Pic(Pn
k)

∼= Z.

Proof. If we identify Cl(Pn
k) = Pic(Pn

k) and apply Proposition 3.17 to X = Pn
k

and U = D+(X0) ∼= An
k , we obtain a surjection Z → Pic(Pn

k). The injectivity
statement of the previous corollary implies that this surjection (which allos
us to identify Pic(Pn

k) with some quotient of Z) must be an isomorphism. (At
this point we have not yet shown that the map d 7→ O(d) is surjective, and
hence an isomorphism; this will follow from the discussion in the following
section.) □

Remark 3.22. One can show that every locally free OP1
k
-module is isomor-

phic to a direct sum of line bundles (Problem 27). Note though that this
statement is not true for Pn

k , n > 1.

(3.7) Divisors on Pn
k .

Let k be a field (or more generally a noetherian unique factorization
domain), and let n ≥ 1. Let us take a look at the line bundles O(d) from
the point of view of Cartier divisors. Write

R = {f =
g

h
; g, h ∈ k[X0, . . . , Xn] non-zero homogeneous polynomials}.
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For f = g/h ∈ R, we define deg(f) = deg(g) − deg(h). We can identify
K(X)× with the subgroup of R of degree 0 elements.
Fix an element f ∈ R and write d = deg(f). Let D be the Cartier divisor

div(f) := (D+(Xi), f/X
d
i )i (this is a new use of the symbol div since f is

not an element of K(Pn
k)). Describing the line bundle OPn

k
(D) in terms of a

gluing datum, it follows that OX(D) ∼= O(d). Thus the composition

R → Div(Pn
k) → Pic(Pn

k)
∼= Z

is the degree map on R. In particular, the isomorphism class of the line
bundle OPn

k
(div(f)) depends only on d, not on the choice of f .

Now let f ∈ k[X0, . . . , Xn] be an irreducible homogeneous polynomial
of degree d > 0. Then V+(f) is an integral closed subscheme of Pn

k of
codimension 1 (since the same is true after intersection with any of the open
charts D+(Xi) (unless the intersection is empty)). From the construction of
the matching between Cartier and Weil divisors, one sees that the Cartier
divisor div(f) defined above corresponds to the Weil divisor [V+(f)]. As
a particular example, for any fixed i, the Weil divisor [V+(Xi)] of the line
V+(Xi) has associated line bundle O(1).
Since the identification of Cartier divisors with Weil divisors is a group

isomorphism, one can extend this description to all divisors, by decomposing
a general f ∈ R as a product of irreducible homogeneous polynomials and of
inverses of such polynomials.
Coming back to the case of an irreducible homogeneous polynomial f of

degree d > 0, the datum of the divisor div(f) corresponds to the choice
of embedding of its associated line bundle O(d) into KPn

k
. The image

of this embedding contains the structure sheaf OPn
k
, and going through

the definitions shows that the global section 1 ∈ Γ(Pn
k ,OPn

k
) is mapped to

f ∈ k[X0, . . . , Xn]d = Γ(Pn
k ,O(d)) (Proposition 3.19) under this embedding.

Compare Problems 31, 33. In other words, the embedding Γ(Pn
k ,O(d)) →

K(X) of the global sections is given by

k[X0, . . . , Xn]d → K(X), g 7→ g/f.
June 7,
2023 Corollary 3.23. Let k be a field, and let Z ⊆ Pn

k be an integral closed
subscheme of codimension 1. Then Z = V+(f) for some homogeneous
polynomial f .

Proof. Consider the divisor [Z] given by Z. Viewed as a Cartier divisor,
it corresponds to an embedding OPn

k
([Z]) → KPn

k
whose image contains

OPn
k
since the divisor [Z] is effective. Let f ∈ k[X0, . . . , Xn]d be the image

of 1 ∈ Γ(Pn
k ,O) in Γ(Pn

k ,O([Z])) = k[X0, . . . , Xn]d under this embedding.
Since the embedding OPn

k
([Z]) → KPn

k
is entirely determined by this image,

the above discussion shows that [Z] = [V+(f)] as divisors and hence that
Z = V+(f). □
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(3.8) Functorial description of Pn.

As we have seen in Section1.1, every scheme X defines a contravariant
functor T 7→ X(T ) := Hom(Sch)(T,X) from the category of schemes to the
category of sets. This functor determines X up to unique isomorphism.
In this section, we want to describe the functor attached in this way to
projective space Pn

R for R a ring.

Lemma 3.24. Let X be a scheme.

(1) Let F be an OX-module. Giving an OX-module homomorphism α : n+1
X →

F is “the same” as giving global sections s0, . . . , sn ∈ Γ(X,F ) (namely
the images of the standard basis vectors of Γ(X,On+1

X ) = Γ(X,OX)n+1.

(2) Now let L be a line bundle on X, and let α : On+1
X → L be an OX-module

homomorphism given by s0, . . . , sn ∈ Γ(X,L ). Then α is surjective if
and only if for every x ∈ X there exists i such that si(x) ̸= 0 in the fiber
L (x).

Proposition 3.25. Let R be a ring, and let S be an R-scheme. There are
bijections, functorial in S,

Pn
R(S) = {(L , α); L a line bundle on S,

α : On+1
S ↠ L a surjective OS-module homom.}/ ∼= .

Here we consider pairs (L , α), (L ′, α′) as isomorphic, if there exists an
OS-module isomorphism β : L → L ′ with α = α′ ◦ β.

Saying that the bijections of the proposition are functorial means that
given a morphism S′ → S of R-schemes the bijections for S and S′ together
with the natural map Pn

R(S) → Pn
R(S

′) and the map (L , α) 7→ (g∗L , g∗α)
give rise to a commutative diagram. (Note that for every line bundle L on S
the pull-back g∗L is a line bundle on S′, and for surjective α the pull-back
g∗α is again a surjective OS′-homomorphism of the desired form.)

Proof. A homomorphism α : On+1
S ↠ L corresponds to n+1 global sections

in Γ(S,L ) (the “images of the standard basis vectors”). Thus X0, . . . , Xn ∈
Γ(Pn

R,O(1)) give rise to a homomorphism On+1
Pn
R

→ O(1). This homomor-

phism is surjective. (In fact, looking back at the construction of O(1)
by gluing and the way how we identified the global sections of O(1) with
R[X0, . . . , Xn]1, under the identification O(1)D+(Xi)

∼= OD+(Xi) the restric-
tion of Xi to D+(Xi) corresponds to 1 ∈ Γ(D+(Xi),OD+(Xi)) and in partic-
ular is non-zero in every fiber.)
Given a morphism S → Pn

R, we can pull this homomorphism back to S and
obtain an element of the right hand side in the statement of the proposition.
Conversely, given a pair (L , α) on S, we can think of the corresponding

morphism S → Pn
R in terms of homogeneous coordinates (i.e., for K-valued

points for some field K), as follows: Denote by f0, . . . , fn ∈ Γ(S,L ) the
global sections corresponding to α. For a point x ∈ S, the fiber L (x) is a
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one-dimensional κ(x)-vector space generated by the elements f0(x), . . . , fn(x)
(i.e., at least one of them is ̸= 0 – this holds since α is surjective). We choose
an isomorphism L (x) ∼= κ(x), and hence can view the fi(x) as elements of
κ(x). Then the morphism S → Pn

S maps x to (f0(x) : · · · : fn(x)) ∈ Pn(κ(x)).
While the individual fi(x), as elements of κ(x), depend on the choice of
isomorphism L (x) ∼= κ(x), the point (f0(x) : · · · : fn(x)) ∈ Pn(κ(x)) is
independent of this choice.
To make this rigorous, consider a pair (L , α) as above, and for i ∈

{0, . . . , n} define

Si = {s ∈ S; α(ei) generates the fiber L (s)},
where ei ∈ On+1

S denotes the i-th standard basis vector. This defines an open

cover of S. By definition, composing α with the injection OS → On+1
S as the

i-th summand induces a trivialization OSi
∼= L|Si

of the restriction of L . We

obtain a morphism Si → D+(Xi) = Spec k[X0
Xi
, . . . , Xn

Xi
] by mapping

Xj

Xi
to

the image of α(ej) ∈ Γ(Si,L ) under the isomorphism Γ(Si,L ) → Γ(Si,OS).
These morphisms can be glued, and one obtains the desired morphism
S → Pn

R.
To conclude the proof, one checks that the two constructions are inverse

to each other. □

Remark 3.26. If S = Spec k for a field k, then every locally free sheaf on
S is free, and the proposition reads as

Pn(k) = {α : kn+1 → k surjective}/ ∼=,
where now homomorphisms α, α′ are isomorphic if and only if they have the
same kernel. Thus we can identify

Pn(k) = {U ⊂ kn+1 sub-vector space of dimension n}.
This description is dual to the classical description of Pn(k) as the set of lines
in kn+1. Passing to the dual space, the projection kn+1 → kn+1/U induces
an inclusion (kn+1/U)∨ → kn+1,∨ of the dual vector spaces. Matching the
standard basis of kn+1 with its dual basis, we can identify kn+1,∨ = kn+1,
and in this way we get back the description in terms of lines.
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4. Smoothness and differentials *

General reference: [GW1] Ch. 6.

The Zariski tangent space.

(4.1) Definition of the Zariski tangent space.

Definition 4.1. Let X be a scheme, x ∈ X, mx ⊂ OX,x the maximal ideal
in the local ring at x, κ(x) the residue class field of X in x. The κ(x)-vector
space (m/m2)

∗
is called the (Zariski) tangent space of X in x.

Definition 4.2. Let R be a ring, f1, . . . , fr ∈ R[T1, . . . , Tn]. We call the
matrix

Jf1,...,fr :=

(
∂fi
∂Tj

)
i,j

∈Mr×n(R[T•])

the Jacobian matrix of the polynomials fi. Here the partial derivatives are
to be understood in a formal sense.

Remark 4.3.

(1) If in the above setting the ideal m is finitely generated, then dimκ(x) TxX
is the minial number of elements needed to generate m and in particular
is finite.

(2) The tangent space construction if functorial in the following sense: Given
a scheme morphism f : X → Y and x ∈ X such that dimκ(x) TxX is
finite or [κ(x) : κ(f(x))] is finite, then we obtain a map

dfx : TxX → Tf(x)Y ⊗κ(f(x)) κ(x).

Example 4.4. Let k be a field, X = V (f1, . . . , fm) ⊆ An
k , fi ∈ k[T1, . . . , Tn],

x = (xi)i ∈ kn = An(k). Then there is a natural identification TxX =
Ker(Jf1,...,fm(x)), where Jf1,...,fm(x) denotes the matrix with entries in κ(x) =
k obtained by mapping each entry of Jf1,...,fm to κ(x), which amounts to
evaluating these polynomials at x.

Proposition 4.5. Let k be a field, X a k-scheme, x ∈ X(k). There is an
identification (functorial in (X,x))

X(k[ε]/(ε2))x := {f ∈ Homk(Spec k[ε]/(ε
2), X); im(f) = {x}} = TxX.

Smooth morphisms.

(4.2) Definition of smooth morphisms.
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Definition 4.6. A morphism f : X → Y of schemes is called smooth of
relative dimension d ≥ 0 in x ∈ X, if there exist affine open neighborhoods
U ⊆ X of x and V = SpecR ⊆ Y of f(x) such that f(U) ⊆ V and an open
immersion j : U → SpecR[T1, . . . , Tn](f1, . . . , fn−d) such that the triangle

U SpecR[T1, . . . , Tn](f1, . . . , fn−d)

V

f

j

is commutative, and that the Jacobian matrix Jf1,...,fn−d
(x) has rank n− d.

We say that f : X → Y is smooth of relative dimension d if f is smooth
of relative dimension d at every point of X. Instead of smooth of relative
dimension 0, we also use the term étale.

With notation as above, if f is smooth at x ∈ X, then x as an open
neighborhood such that f is smooth at all points of this open neighborhood.
Clearly, An

S and Pn
S are smooth of relative dimension n for every scheme

S. (It is harder to give examples of non-smooth schemes directly from the
definition; we will come back to this later.)

(4.3) Dimension of schemes.

Recall from commutative algebra that for a ring R we define the (Krull)
dimension dimR of R as the supremum over all lengths of chains of prime
ideals, or equivalently as the dimension of the topological space SpecR in
the sense of the following definition.

Definition 4.7. Let X be a topological space. We define the dimension of
X as

dimX := sup{ℓ; there exists a chain Z0 ⊋ Z1 ⊋ · · · ⊋ Zℓ

of closed irreducible subsets Zi ⊆ X}.

We will use this notion of dimension for non-affine schemes, as well. Recall
the following theorem about the dimension of finitely generated algebras
over a field from commutative algebra:

Theorem 4.8. Let k be a field, and let A be a finitely generated k-algebra
which isi a domain. Let m ⊂ A be a maximal ideal. Then

dimA = trdegk(Frac(A)) = dimAm.

By passing to an affine cover, we obtain the following corollary:

Corollary 4.9. Let k be a field, and let X be an integral k-scheme which
is of finite type over k. Denote by K(X) its field of rational functions. Let
U ⊆ X be a non-empty open subset, and let x ∈ X be a closed point. Then

dimX = dimU = trdegk(K(X)) = dimOX,x.
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(4.4) Existence of smooth points.

Let k be a field.

Lemma 4.10. Let X, Y be [integral1] k-schemes which are locally of finite
type over k. Let x ∈ X, y ∈ Y , and let φ : OY,y → OX,x be an isomorphism
of k-algebras. Then there exist open neighborhoods U of x and V of y and

an isomorphism h : U → V of k-schemes with h♯x = φ.

Proposition 4.11. Let X be an integral k-scheme of finite type. Assume
that K(X) ∼= k(T1, . . . , Td)[α] with α separable algebraic over k(T1, . . . , Td).
(This is always possible if k is perfect.) (Then dimX = d by the above.)

Then there exists a dense open subset U ⊆ X and a separable irreducible
polynomial g ∈ k(T1, . . . , Td)[T ] with coefficients in k[T1, . . . , Td], such that
U is isomorphic to a dense open subset of Spec k[T1, . . . Td]/(g).

Theorem 4.12. Let k be a perfect field, and let X be a nonempty reduced
k-scheme locally of finite type over k. Then the smooth locus

Xsm := {x ∈ X; X → Spec k is smooth inx}
of X is open and dense.

(4.5) Regular rings.

For references to the literature, see [GW1] App. B, in particular B.73, B.74,
B.75

Definition 4.13. A noetherian local ring A with maximal ideal m and
residue class field κ is called regular, if dimA = dimκm/m

2.

One can show that the inequality dimA ≤ dimκm/m
2 always holds. There-

fore we can rephrase the definition as saying that A is regular if m has a
generating system consisting of dimA elements.

Definition 4.14. A noetherian ring A is called regular, if Am is regular
for every maximal ideal m ⊂ A.

We quote the following (mostly non-trivial) results about regular rings:

Theorem 4.15.
(1) Every localization of a regular ring is regular.
(2) If A is regular, then the polynomial ring A[T ] is regular.
(3) (Theorem of Auslander–Buchsbaum) Every regular local ring is factorial.
(4) Let A be a regular local ring with maximal ideal m and of dimension d,

and let f1, . . . , fr ∈ m. Then A/(f1, . . . , fr) is regular of dimension d− r
if and only if the images of the fi in m/m2 are linearly independent over
A/m.

1The statement is true in general, but in the lecture we proved it only with the additional
assumption that X and Y are integral.
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(4.6) Smoothness and regularity.

Let k be a field.

Lemma 4.16. Let X be a k-scheme locally of finite type. Let x ∈ X such
that X → Spec k is smooth of relative dimension d in x. Then OX,x is regular
of dimension ≤ d. If moreover x is closed, then OX,x is regular of dimension
d.

Lemma 4.17. Let X = V (g1, . . . , gs) ⊆ An
k , and let x ∈ X be a closed

point. If rk Jg1,...,gs(x) ≥ n − dimOX,x, then x is smooth in X/k, and
rk Jg1,...,gs(x) = n− dimOX,x.

Theorem 4.18. Let X be a k-scheme locally of finite type, x ∈ X a closed
point, d ≥ 0. Fix an algebraically closed extension field K of k and write
XK = X ⊗k K. The following are equivalent:
(i) The morphism X → Spec k is smooth of relative dimension d at x.
(ii) For all points x ∈ XK lying over x, XK is smooth over K of relative

dimension d at x.
(iii) There exists a point x ∈ XK lying over x, such that XK is smooth over

K of relative dimension d at x.
(iv) For all points x ∈ XK lying over x, the local ring OXK ,x is regular of

dimension d.
(v) There exists a point x ∈ XK lying over x, such that the local ring OXK ,x

is regular of dimension d.
If these conditions hold, then the local ring OX,x is regular of dimension d,
and if κ(x) = k, then this last condition is equivalent to the previous ones.

Corollary 4.19. Let X be an irreducible scheme of finite type over k, and
let x ∈ X(k) be a k-valued point. Then X → Spec k is smooth at x if and
only if dimX = dimk TxX.

Corollary 4.20. Let X = V (g1, . . . , gs) ⊆ An
k and let x ∈ X be a smooth

closed point. Let d = dimOX,x. Then Jg1,...,gs(x) has rank n−d. In particular,
s ≥ n− d.
After renumbering the gi, if necessary, there exists an open neighborhood

U of x and an open immersion U ⊆ V (g1, . . . , gn−d), i.e., locally around x,
“X is cut out in affine space by the expected number of equations”.

Corollary 4.21. Let X be locally of finite type over k. The following are
equivalent:
(i) X is smooth over k.
(ii) X ⊗k L is regular for every field extension L/k.
(iii) There exists an algebraically closed extension field K of k such that

X ⊗k K is regular.
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The sheaf of differentials.

General references: [M2] §25, [Bo] Ch. 8, [H] II.8.

(4.7) Modules of differentials.

Let A be a ring.

Definition 4.22. Let B be an A-algebra, and M a B-module. An A-
derivation from B to M is a homomorphism D : B →M of abelian groups
such that

(a) (Leibniz rule) D(bb′) = bD(b′) + b′D(b) for all b, b′ ∈ B,
(b) d(a) = 0 for all a ∈ A.

Assuming property (a), property (b) is equivalent to saying that D is a
homomorphism of A-modules. We denote the set of A-derivations B →M
by DerA(B,M); it is naturally a B-module.

Definition 4.23. Let B be an A-algebra. We call a B-module ΩB/A together

with an A-derivation dB/A : B → ΩB/A a module of (relative, KÃ¤hler)
differentials of B over A if it satisfies the following universal property:

For every B-module M and every A-derivation D : B →M , there exists a
unique B-module homomorphism ψ : ΩB/A →M such that D = ψ ◦ dB/A.
In other words, the map HomB(ΩB/A,M) → DerA(B,M), ψ 7→ ψ ◦ dB/A

is a bijection.

Lemma 4.24. Let I be a set, B = A[Ti, i ∈ I] the polynomial ring. Then

ΩB/A := B(I) with dB/A(Ti) = ei, the “i-th standard basis vector” is a module
of differentials of B/A.
So we can write ΩB/A =

⊕
i∈I BdB/A(Ti).

Lemma 4.25. Let φ : B → B′ be a surjective homomorphism of A-algebras,
and write b = Ker(φ). Assume that a module of differentials (ΩB/A, dB/A)
for B/A exists. Then

ΩB/A/(bΩB/A +B′d(b))

together with the derivation dB′/A induced by dB/A is a module of differentials
for B′/A.

Corollary 4.26. For every A-algebra B, a module ΩB/A of differentials
exists. It is unique up to unique isomorphism.

We will see later that for a scheme morphism X → Y , one can construct
an OX -module ΩX/Y together with a “derivation” OX → ΩX/Y by gluing
sheaves associated to modules of differentials attached to the coordinate
rings of suitable affine open subschemes of X and Y .
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Let φ : A→ B be a ring homomorphism. For the next definition, we will
consider the following situation: Let C be a ring, I ⊆ C an ideal with I2 = 0,
and let

B C/I

A C

φ

be a commutative diagram (where the right vertical arrow is the canonical
projection). We will consider the question whether for these data, there
exists a homomorphism B → C (dashed in the following diagram) making
the whole diagram commutative:

B C/I

A C

φ

Definition 4.27. Let φ : A→ B be a ring homomorphism.
(1) We say that φ is formally unramified, if in every situation as above,

there exists at most one homomorphism B → C making the diagram
commutative.

(2) We say that φ is formally smooth, if in every situation as above, there
exists at least one homomorphism B → C making the diagram commuta-
tive.

(3) We say that φ is formally étale, if in every situation as above, there
exists a unique homomorphism B → C making the diagram commutative.

Passing to the spectra of these rings, we can interpret the situation in
geometric terms: SpecC/I is a closed subscheme of SpecC with the same
topological space, so we can view the latter as an “infinitesimal thickening”
of the former. The question becomes the question whether we can extend
the morphism from SpecC/I to SpecB to a morphism from this thickening.

Proposition 4.28. Let φ : A → B be a ring homomorphism. Then φ is
formally unramified if and only if ΩB/A = 0.

For an algebraic field extension L/K one can show that K → L is formally
unramified if and only if it is formally smooth if and only if L/K is separable.
Cf. Problem 27 and [M2] §25, §26 (where the discussion is extended to the
general, not necessarily algebraic, case).

Theorem 4.29. Let f : A→ B, g : B → C be ring homomorphisms. Then
we obtain a natural sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0

which is exact.
If moreover g is formally smooth, then the sequence

0 → ΩB/A ⊗B C → ΩC/A → ΩC/B → 0
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is a split short exact sequence.

Theorem 4.30. Let f : A → B, g : B → C be ring homomorphisms.
Assume that g is surjective with kernel b. Then we obtain a natural sequence
of C-modules

b/b2 → ΩB/A ⊗B C → ΩC/A → 0,

where the homomorphism b/b2 → ΩB/A ⊗B C is given by x 7→ dB/A(x)⊗ 1.
If moreover g ◦ f is formally smooth, then the sequence

0 → b/b2 → ΩB/A ⊗B C → ΩC/A → 0

is a split short exact sequence.

(4.8) The sheaf of differentials of a scheme morphism.

Remark 4.31. Let again B an A-algebra. There is the following alternative
construction of ΩB/A: Let m : B ⊗A B → B be the multiplication map, and

let I = Ker(m). Then I/I2 is a B-module, and d : B → I/I2, b 7→ 1⊗b−b⊗1,
is an A-derivation. One shows that (I/I2, d) satisfies the universal property
defining (ΩB/A, dB/A).

We can use a similar definition as we used for ring homomorphisms above
to define the notions of formally unramified, formally smooth and formally
étale morphisms of schemes.

Definition 4.32. Let f : X → Y be a morphism of schemes.
(1) We say that f is formally unramified, if for every ring C, every ideal

I with I2 = 0, and every morphism SpecC → Y (which we use to
view SpecC and SpecC/I as Y -schemes), the composition with the
natural closed embedding SpecC/I → SpecC yields an injective map
HomY (SpecC,X) → HomY (SpecC/I,X).

(2) We say that f is formally smooth, if for every ring C, every ideal I
with I2 = 0, and every morphism SpecC → Y , the composition with
the natural closed embedding SpecC/I → SpecC yields a surjective map
HomY (SpecC,X) → HomY (SpecC/I,X).

(3) We say that f is formally étale, if f is formally unramified and formally
smooth.

If f is a morphism of affine schemes, then f has one of the properties of
this definition if and only if the corresponding ring homomorphism has the
same property in the sense of our previous definition.

Lemma 4.33.
(1) Every monomorphism of schemes (in particular: every immersion) is

formally unramified.
(2) Let A→ B → C be ring homomorphisms such that A→ B is formally

unramified. Then we can naturally identify ΩC/A = ΩC/B.
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Definition 4.34. Let X → Y be a morphism of schemes, and let M be
an OX-module. A derivation D : OX → M is a homomorphism of abelian
sheaves such that for all open subsets U ⊆ X, V ⊆ Y with f(U) ⊆ V , the
map O(U) → M (U) is an OY (V )-derivation.
Equivalently, D : OX → M is a homomorphism of f−1(OY )-modules such

that for every open U ⊆ X, the Leibniz rule

D(U)(bb′) = bD(U)(b′) + b′D(U)(b), ∀b, b′ ∈ Γ(U,OX)

holds.
We denote the set of all these derivations by DerY (OX ,M ); it is a

Γ(X,OX)-module.

Definition/Proposition 4.35. Let f : X → Y be a morphism of schemes.
The following three definitions give the same result (up to unique isomor-
phism), called the sheaf of differentials of f or of X over Y , denoted
ΩX/Y — a quasi-coherent OX-module together with a derivation dX/Y : OX →
ΩX/Y .
(i) There exists a unique OX-module ΩX/Y together with a derivation dX/Y : OX →

ΩX/Y such that for all affine open subsets SpecB = U ⊆ X, SpecA =

V ⊆ Y with f(U) ⊆ V , ΩX/Y = Ω̃B/A and dX/Y |U is induced by dB/A.

(ii) ΩX/Y = ∆∗(J /J 2), where ∆: X → X×Y X is the diagonal morphism,
W ⊆ X ×Y X is open such that im(∆) ⊆W is closed (if f is separated
we can take W = X ×Y X), and J is the quasi-coherent ideal defining
the closed subscheme ∆(X) ⊆ W . The derivation dX/Y is induced, on
affine opens, by the map b 7→ 1⊗ b− b⊗ 1.

(iii) The quasi-coherent OX-module ΩX/Y together with dX/Y is characterized
by the universal property that composition with dX/Y induces bijections

HomOX
(ΩX/Y ,M )

∼→ DerY (OX ,M )

for every quasi-coherent OX-module M , functorially in M .

The properties we proved for modules of differentials can be translated
into statements for sheaves of differentials:

Proposition 4.36. Let f : X → Y , g : Y ′ → Y be morphisms of schemes,
and let X ′ = X ×Y Y

′. Denote by g′ : X ′ → X the base change of g. There
is a natural isomorphism ΩX′/Y ′ ∼= (g′)∗ΩX/Y , compatible with the universal
derivations.

Proposition 4.37. Let f : X → Y , g : Y → Z be morphisms of schemes.
Then there is an exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of OX-modules. If f is formally smooth, then the sequence

0 → f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

is exact and splits locally on X.
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Proposition 4.38. Let i : Z → X be a closed immersion with corresponding
ideal sheaf J ⊆ OX , and let g : X → Y be a scheme morphism. Then there
is an exact sequence

i∗(J /J 2) → i∗ΩX/Y → ΩZ/Y → 0

of OZ-modules. If Z is formally smooth over Y , then the sequence

0 → i∗(J /J 2) → i∗ΩX/Y → ΩZ/Y → 0

is exact and splits locally on Z.

Proposition 4.39. Let K be a field, and let X be a k-scheme of finite type.
Let x ∈ X(k). Then we have an isomorphism TxX = ΩX/k(x) between the
Zariski tangent space at x and the fiber of the sheaf of differentials of X/k
at x.

Proposition 4.40. Let R be a ring. We have a short exact sequence

0 → ΩPn
R/R → O(−1)n+1 → On → 0

of OX-modules.

(4.9) Sheaves of differentials and smoothness.

We start by slightly rephrasing the definition of a smooth morphism.

Definition 4.41. A morphism f : X → Y of schemes is called smooth of
relative dimension d ≥ 0 in x ∈ X, if there exist affine open neighborhoods
U ⊆ X of x and V = SpecR ⊆ Y of f(x) such that f(U) ⊆ V and an open
immersion j : U → SpecR[T1, . . . , Tn](f1, . . . , fn−d) such that the triangle

U SpecR[T1, . . . , Tn](f1, . . . , fn−d)

V

f

j

is commutative, and that the images of df1, . . . , dfn−d in the fiber Ω1
An
R/R⊗

κ(x) are linearly independent over κ(x). (We view x as a point of An
R via

the embedding U → SpecR[T1, . . . , Tn](f1, . . . , fn−d) → SpecR[T1, . . . , Tn] =
An
R.)

Proposition 4.42. Let f : X → S be smooth of relative dimension at
x ∈ X. Then there exists an open neighborhood U of x such that the
restriction ΩX/Y |U (= ΩU/Y ) is free of rank d.

Theorem 4.43. Let k be an algebraically closed field, and let X be an
irreducible k-scheme of finite type. Let d = dimX. Then X is smooth over
k if and only if ΩX/k is locally free of rank d.
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Proposition 4.44. Let f : X → S be smooth of relative dimension d
at x ∈ X. Then there exists an open neighborhood U of x such that the
restriction U → S of f to U is formally smooth.

Theorem 4.45. Let f : X → Y be a morphism locally of finite presentation
(e.g., if Y is noetherian and f is locally of finite type). Then f is smooth if
and only if f is formally smooth.

We skip the proof that smoothness implies formal smoothness, see for
instance [Bo] Ch. 8.5. (But cf. the previous proposition which shows that a
smooth morphism is at least “locally formally smooth”.)
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5. Projective schemes *

(5.1) The Proj construction.

Reference: [GW1] Ch. 13.

Definition 5.1.
(1) A graded ring is a ring A with a decomposition A =

⊕
d≥0Ad as abelian

groups such that Ad · Ae ⊆ Ad+e for all d, e. The elements of Ad are
called homogeneous of degree d.

(2) Let R be a ring. A graded R-algebra is a graded ring A together with a
ring homomorphism R→ A.

(3) A homomorphism A→ B of graded rings (or graded R-algebras) is a ring
homomorphism (or R-algebra homomorphism, respectively) f : A → B
such that f(Ad) ⊆ Bd for all d.

(4) Let A be a graded ring. A graded A-module is an A-module M with a
decomposition M =

⊕
d∈ZMd such that Ad ·Me ⊆Md+e for all d, e. The

elements of Md are called homogeneous of degree d.
(5) A homomorphism M → N of graded A-modules is an A-module homo-

morphism f : M → N such that f(Md) ⊆ Nd for all d.
(6) Let A be a graded ring and let M be a graded A-module. A homogeneous

submodule of M is a submodule N ⊆M such that N =
⊕

d∈Z(N ∩Md).
In this way, N is itself a graded A-module and the inclusion N ↪→M is
a homomorphism of graded A-modules. (And conversely, every injective
homomorphism of graded A-modules has a homogeneous submodule as its
image.) A homogeneous submodule of A is called a homogeneous ideal.

Example 5.2. Let R be a ring. Then the polynomial ring R[T0, . . . , Tn]
is a graded R-algebra if we set R[T0, . . . , Tn]d to be the R-submodule of
homogeneous polynomials of degree d.

We now fix a graded ring A.
For a homogeneous element f ∈ Ae, and a graded A-module M , the

localization Mf is a graded A-module via

Mf,d = {m
f i

; m ∈Md+ei}.

Applying this to A as an A-module, we obtain a grading on Af giving Af

the structure of a graded ring. Then Mf is a graded Af -module.
We define

M(f) :=Mf,0,

the degree 0 part of Mf . Then A(f) is a ring and M(f) is an A(f)-module.

Example 5.3. Let R be a ring. Then

R[T0, . . . , Tn](Ti) = R[
T0
Ti
, . . . ,

Tn
Ti

].
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Definition 5.4. We write A+ :=
⊕

d>0Ad, an ideal of A. A homogeneous
prime ideal p ⊂ A is called relevant if A+ ̸⊆ p.

Definition 5.5. We denote by Proj(A) the set of all relevant homogeneous
prime ideals of A. We equip Proj(A) with the Zariski topology, by saying
that the closed subsets are the subsets of the form

V+(I) := {p ∈ Proj(A); I ⊆ p}.

for homogeneous ideals I ⊆ A.

For a homogeneous element f , we write D+(f) := Proj(A) \ V+(f).

Lemma 5.6. Let f ∈ A be a homogeneous element. Then the map

D+(f) → SpecA(f), p 7→ (pAf ) ∩A(f)

is a homeomorphism.

Proposition 5.7. There is a unique sheaf O of rings on Proj(A) such that

Γ(D+(f),O) = A(f)

for every homogeneous element f ∈ A and with restriction maps given by the
canonical maps between the localizations. The ringed space (Proj(A),O) is a
separated scheme which we again denote by Proj(A).

Definition 5.8. Let R be a ring, and let X be an R-scheme. We say that
X is projective over R (or that the morphism X → SpecR is projective), if
there exist n ≥ 0 and a closed immersion X → Pn

R of R-schemes.

Theorem 5.9. Let R be a ring, and let X be a projective R-scheme. Then
X is proper over R.

(5.2) Quasi-coherent modules on Proj(A).

Let A be a graded ring, X = ProjA. If M is a graded A-module, there is

a unique sheaf M̃ of OX -modules such that

Γ(D+(f), M̃) =M(f)

for every homogeneous element f ∈ A, and such that the restriction maps
for inclusions of the form D+(g) ⊆ D+(f) are given by the natural maps
between the localizations. This sheaf is a quasi-coherent OX -module.

Example 5.10. Let A(n) be the graded A-module defined by A(n) =⊕
d∈ZAn+d. We set OX(n) = Ã(n). If A = R[T0, . . . , Tn] for a ring R, so

that X = Pn
R, then this notation is consistent with our previous definition.

For f ∈ Ad, multiplication by fk defines an isomorphism

OX|D+(f)
∼→ OX(n)|D+(f).
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In particular, if A is generated as an A0-algebra by A1, then OX(n) is a
line bundle.

Assume, for the remainder of this section, that A is generated as an
A0-algebra by A1. So X =

⋃
f∈A1

D+(f), and OX(n) is a line bundle.

For an OX -module F , write F (n) := F ⊗OX
OX(n), and define a graded

A-module Γ∗(F ) by

Γ∗(F ) =
⊕
n∈Z

Γ(X,F (n)).

Lemma 5.11. For a graded A-module M , there is a natural map M →
Γ∗(M̃). For an OX-module F , there is a natural map Γ̃∗(F ) → F . If F is
quasi-coherent, then the latter map is an isomorphism.

Call a graded A-module M saturated, if the map M → Γ∗(M̃) is an
isomorphism.

Proposition 5.12. The functors M → M̃ and F → Γ∗(F ) define an
equivalence of categories between the category of saturated graded A-modules
and the category of quasi-coherent OX-modules.
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6. Cohomology of OX-modules

General references: [We], [HS], [Gr], [KS], [GW2].
June 7,
2023

The formalism of derived functors.

(6.1) Complexes in abelian categories.

Reference: [We] Ch. 1, [GW2] App. F.

Let A be an abelian category (e.g., the category of abelian groups, the
category of R-modules for a ring R, the category of abelian sheaves on
a topological space X, the category of OX -modules on a ringed space X,
or the category of quasi-coherent OX -modules on a scheme X; see [GW2]
Section (F.7)).
A complex in A is a sequence of morphisms

· · · Ai Ai+1 Ai+2 · · ·di di+1

in A (i ∈ Z), such that di+1 ◦ di = 0 for every i ∈ Z. The maps di are
called the differentials of the complex.
Given complexes A•, B•, a morphism A• → B• of complexes is a family

of morphisms f i : Ai → Bi such that the f i commute with the differentials
of A• and B• in the obvious way. With this notion of morphisms, we obtain
the category C(A) of complexes in A. This is an abelian category (kernels,
images, . . . are formed degree-wise); see [We] Thm. 1.2.3.

Definition 6.1. Let A• be a complex in A. For i ∈ Z, we call

H i(A•) := Ker(di)/ im(di−1)

the i-th cohomology object of A•. We obtain functors H i : C(A) → A.
We say that A• is exact at i, if H i(A•) = 0. We say that A• is exact, if
H i(A•) = 0 for all i.

Remark 6.2. Let 0 → A• → B• → C• → 0 be a sequence of morphisms
of complexes. The sequence is exact (in the sense that at each point the
kernel and image in the category C(A) coincide) if and only if for every i,
the sequence 0 → Ai → Bi → Ci → 0 is exact.

Proposition 6.3. [We] Thm. 1.3.1 Let 0 → A• → B• → C• → 0 be
an exact sequence of complexes in A. Then there are maps δi : H i(C•) →
H i+1(A•) (called boundary maps) such that, together with the maps induced
by functoriality of the H i, we obtain the long exact cohomology sequence

· · ·H i(A•) → H i(B•) → H i(C•) → H i+1(A•) → · · · .
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We need a criterion which ensures that two morphisms between complexes
induce the same maps on all cohomology objects. See [We] 1.4.

Definition 6.4. Let f, g : A• → B• be morphisms of complexes. We say
that f and g are homotopic, if there exists a family of maps ki : Ai → Bi−1,
i ∈ Z, such that

f − g = dk + kd,

which we use as short-hand notation for saying that for every i,

f i − gi = di−1
B ◦ ki + ki+1 ◦ diA.

In this case we write f ∼ g. The family (ki)i is called a homotopy.

Proposition 6.5. Let f, g : A• → B• be morphisms of complexes which are
homotopic. Then for every i, the maps H i(A•) → H i(B•) induced by f and
g are equal.

In particular, if A• is a complex such that idA• ∼ 0, then H i(A•) = 0 for
all i, i.e., A• is exact.

Definition 6.6. Let A• and B• be complexes. We say that A• and B• are
homotopy equivalent, if there exist morphisms f : A• → B• and g : B• → A•

of complexes such that g ◦ f ∼ idA and f ◦ g ∼ idB. In this case, f and g
induce isomorphisms H i(A•) ∼= H i(B•) for all i.

(6.2) Left exact functors.

Let A, B be abelian categories. All functors F : A → B that we con-
sider are assumed to be additive, i.e., they induce group homomorphisms
HomA(A,A

′) → HomB(F (A), F (A
′)) for all A, A′ in A.

Definition 6.7. A (covariant) functor F : A → B is called left exact, if
for every short exact sequence 0 → A′ → A→ A′′ → 0 in A, the sequence

0 → F (A′) → F (A) → F (A′′)

is exact.

Definition 6.8. A contravariant functor F : A → B is called left exact if
for every short exact sequence 0 → A′ → A→ A′′ → 0 in A, the sequence

0 → F (A′′) → F (A) → F (A′)

is exact.

Similarly, we have the notion of right exact functor. A functor which is left
exact and right exact (and hence preserves exactness of arbitrary sequences)
is called exact.
Let A0 ∈ A. Then the functors A 7→ HomA(A,A0) and A 7→ HomA(A0, A)

are left exact.
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(6.3) δ-functors.

Reference: [We] 2.1, [GW2] Section (F.48).

Let A, B be abelian categories.

Definition 6.9. A δ-functor from A to B is a family (T i)i≥0 of functors
A → B together with morphisms δi : T i(A′′) → T i+1(A′) (called boundary
morphisms) for every short exact sequence 0 → A′ → A → A′′ → 0 in A,
such that the sequence

0 → T 0(A′) → T 0(A) → T 0(A′′) → T (A′) → · · ·
is exact, and such that the δi are compatible with morphisms of short exact
sequences in the obvious way.

Definition 6.10. A δ-functor (T i)i from A to B is called universal, if for
every δ-functor (Si)i and every morphism f0 : T 0 → S0 of functors, there
exist unique morphisms f i : T i → Si of functors for al i > 0, such that the
f i, i ≥ 0 are compatible with the boundary maps δi of the two δ-functors for
each short exact sequence in A.

The definition implies that given a (left exact) functor F , any two universal

δ-functors (T i)i, (T
′i)i with T

0 = T ′0 = F are isomorphic (in the obvious
sense) via a unique isomorphism.

Definition 6.11. A functor F : A → B is called effaceable, if for every X
in A there exists a monomorphism ι : X ↪→ A with F (ι) = 0.

A particular case is the situation where each X admits a monomorphism
to an object I with F (I) = 0.

Proposition 6.12. ([We] Thm. 2.4.7, Ex. 2.4.5.) Let (T i)i be a δ-functor
from A to B such that for every i > 0, the functor T i is effaceable. Then
(T i)i is a universal δ-functor.

(6.4) Injective objects.
June 12,
2023 Let A be an abelian category.

Definition 6.13. An object I in A is called injective, if the functor
X 7→ HomA(X, I) is exact.

If I is injective, then every short exact sequence 0 → I → A→ A′′ → 0 in
A splits. Conversely, if I is an object such that every short exact sequence
0 → I → A→ A′′ → 0 splits, then I is injective.

Definition 6.14. Let X ∈ A. An injective resolution of X is an exact
sequence

0 → X → I0 → I1 → I2 → · · ·



ALGEBRAIC GEOMETRY 2, SS 23 51

in A, where every Ii is injective.

Definition 6.15. We say that the category A has enough injectives if
for every object X there exists a monomorphism X ↪→ I from X into an
injective object I. Equivalently: Every object has an injective resolution.

Remark 6.16.

(1) The categories of abelian groups, of R-modules for a ring R, of abelian
sheaves on a topological space, and more generally of OX -modules on a
ringed space X all have enough injective objects. For these categories,
it is not too hard to show this statement directly (for OX -modules on a
ringed space X, e.g., see [H] Proposition III.2.2). Alternatively, one can
show that they all are “Grothendieck abelian categories”, and that those
have enough injective objects (see [GW2] Sections (F.12), (21.2)).

(2) Dually, we have the notion of projective object (i.e., P such that HomA(P,−)
is exact), of projective resolution · · · → P1 → P0 → A→ 0, and of abelian
categories with enough projective objects. For a ring R, the category
of R-modules clearly has enough projectives, since every free module is
projective, and every module admits an epimorphism from a free module.
Categories of sheaves of abelian groups or OX -modules typically do not
have enough projectives.

Lemma 6.17. ([We] Theorem 2.3.7, see also Porism 2.2.7) Let A be an
abelian category and let f : A → B be a morphism in A. Let Ii ∈ A be
injective, i ≥ 0, and let 0 → A → A0 → A1 → · · · be exact with Ai ∈ A.
Then there exists a morphism g : A• → I• of complexes such that the diagram

0 A A0 A1 · · ·

0 B I0 I1 · · ·
is commutative, and g is uniquely determined up to homotopy.

Lemma 6.18. (cf. [We] Lemma 2.2.8, “Horseshoe lemma”) Let 0 → A1 →
A2 → A3 → 0 be an exact sequence in an abelian category A. Let 0 →
A1 → I•1 and 0 → A3 → I•3 be injective resolutions. Let Ii2 := Ii1 × Ii3 and
define A2 → I02 by using the composition A2 → A3 → I03 and lifting the map
A1 → I01 to a map A3 → I10 , using the injectivity of I10 . Then we obtain an
injective resolution 0 → A2 → I•2 , and a term-wise split short exact sequence

0 −→ I•1 −→ I•2 −→ I•3 −→ 0

of complexes.

(6.5) Right derived functors.
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Theorem 6.19. Let F : A → B be a left exact functor, and assume that A
has enough injectives.
For each A ∈ A, fix an injective resolution 0 → A→ I•, and define

RiF (A) = H i(F (I•)), i ≥ 0,

where F (I•) denotes the complex obtained by applying the functor to all Ii

and to the differentials of the complex I•. Then:

(1) The RiF are additive functors A → B, and RiFX is independent of the
choice of injective resolution of X up to natural isomorphism.

(2) We have an isomorphism F ∼= R0F of functors.

(3) For I injective, we have RiFI = 0 for all i > 0.

(4) The family (RiF )i admits natural boundary maps making it a universal
δ-functor.

We call the RiF the right derived functors of F .

Remarks on the proof. For part (1), the main ingredient is Lemma 6.17.
Parts (2) and (3) are easy. To construct the boundary maps giving rise to
long exact cohomology sequences in Part (4), use Lemma 6.18; since the
exact sequence 0 → I•1 → I•2 → I•3 → 0 is term-wise split, the exactness is
preserved when applying the functor F . Finally, this δ-functor is effaceable
by (c) and hence universal. □

June 14,
2023 Definition 6.20. Let F be a left exact functor as above. We say that an

object A ∈ A is F -acyclic, if RiF (A) = 0 for all i > 0.

Definition 6.21. Let F be a left exact functor as above, and let A ∈ A.
An F -acyclic resolution of A is an exact sequence 0 → A→ J0 → J1 → · · ·
where all J i are F -acyclic.

Proposition 6.22. Let F be a left exact functor as above, and let A ∈ A.
Let 0 → A → J0 → J1 → · · · be an F -acyclic resolution. Then we have
natural isomorphisms RiF (A) = H i(F (J•)), i.e., we can compute RiF (A)
by an F -acyclic resolution.

Sketch of the proof. The assertion is easy to see for i = 0. For i = 1, note
that Ker(F (J1) → F (J2)) = F (J0/A) by the left exactness of F . From this,
one gets R1F (A) = H1(F (J•)).
From the long exact cohomology sequence attached to the short exact

sequence 0 → A → J0 → J0/A → 0, we get isomorphisms RiF (J0/A) ∼=
Ri+1F (A) for i ≥ 1. Since 0 → J0/A→ J1 → · · · is an acyclic resolution of
J0/A, we get

Ri+1F (A) ∼= RiF (J0/A) ∼= H i+1(F (J•)),

where the second isomorphism holds by induction. □
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(6.6) Derived categories.

Sometimes it is useful to employ the language of derived categories which
gives rise to a notion of derived functor RF that contains slightly more
information than the family (RiF )i discussed above (for a left exact functor
F : A → B). In fact, RF attaches to each object of A, and more generally to
each complex A in C(A), a complex RF (A) (up to some equivalence relation;
more precisely, an object RF (A) ∈ D(B) in the derived category of B) whose
cohomology objects are the RiF (A), i.e., H i(RF (A)) = RiF (A).
See [GW2] (and the references given there) for a systematic treatment:

Appendix F for the general theory, in particular Sections (F.37) for the
definition of the derived category of an abelian category, (F.42), (F.43), (F.44)
for the notion of derived functor, (F.48) for a comparison with the notion
of δ-functor defined above, Chapter 21 for general results on cohomology
of OX -modules on a ringed space X (specifically, the derived functors of
the global section and direct image functors), Chapter 22 for cohomology of
quasi-coherent OX -modules on a scheme X, Chapter 23 for cohomology of
proper schemes and the derived direct image functor of a proper morphism.
While in these chapters one sometimes obtains stronger or clearer statements
using derived categories, for a large part the key arguments are exactly
the same as with the “naive approach” using derived functors that we will
take. In Chapter 24 on the theorem on formal functions and in particular
in Chapter 25 on Grothendieck duality, the machinery of derived categories
really shows its full power (but it is unlikely that we will get there in this
class).

Cohomology of sheaves.

General reference: [H] Ch. III, [Stacks], [GW2] Chapter 21.

(6.7) Cohomology groups.

Let X be a topological space. Denote by (AbX) the category of abelian
sheaves (i.e., sheaves of abelian groups) on X. We have the global section
functor

Γ: (AbX) → (Ab), F 7→ Γ(X,F ),

to the category of abelian groups. This is a left exact functor, and we
denote its right derived functors by H i(X,−). We call H i(X,F ) the i-th
cohomology group of X with coefficients in F .

Example 6.23. For a field k, H1(P1
k,O(−2)) ̸= 0.
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(6.8) Flasque sheaves.

Reference: [GW2] Section (21.7).June 19,
2023

Definition 6.24. Let X be a topological space. A sheaf F on X is called
flasque (or flabby), if all restriction maps F (U) → F (V ) for V ⊆ U ⊆ X
open are surjective.

For the next lemma, we use the extension by zero functor: Let j : U → X
be the inclusion of an open subspace into a topological space X (similarly
one can work with an open immersion of ringed spaces). For an abelian sheaf
F on U we define j!F as the sheafification of the presheaf

V 7→

{
F (V ) if V ⊆ U,

0 otherwise.

We obtain a left adjoint to the restriction functor j∗.

Lemma 6.25. Let X be a ringed space. Let F be an injective object in the
category of OX-modules. Then F is flasque.

Sketch of proof. Identify F (U) = Hom(jU,!OU ,F ), where jU : U → X is
the inclusion of an open subset U into X, and jU,! is the extension by zero
functor, using the adjunction between jU,! and j

∗
U . □

Proposition 6.26. Let X be a topological space, and let F be a flasque
abelian sheaf on X. Then F is Γ-acyclic, i.e., H i(X,F ) = 0 for all i > 0.

Proof. Given a flasque sheaf F ; embed it into an injective abelian sheaf and
use the results of Problem 40 and dimension shift. □

Corollary 6.27. Let X be a ringed space. The right derived functors of
the global section functor from the category of OX-modules to the category of
abelian groups can naturally be identified with H i(X,−).

It follows that for an OX-module F the cohomology groups H i(X,F ) carry
a natural Γ(X,OX)-module structure.

(6.9) Grothendieck vanishing.

Reference: [H] III.2, [GW2] Section (21.12).

Lemma 6.28. Let X be a topological space, and let ι : Y → X be the inclusion
of a closed subset Y of X. Let F be an abelian sheaf on X. Then there are
natural isomorphisms

H i(Y,F ) = H i(X, ι∗F ), i ≥ 0.

Sketch of proof. Use that ι∗ preserves the property of being flasque, and that
the cohomology groups can be computed using a flasque resolution. □
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Proposition 6.29. Let X be a noetherian topological space, and let (Fi)i
be a filtered inductive system of abelian sheaves on X. Then the natural
homomorphism

colim
i

Hn(X,Fi) → Hn(X, colim
i

F )

is an isomorphism for all n ≥ 0.

Sketch of proof. First show the statement for global sections, i.e., for n = 0.
Since filtered colimits are exact, both sides give δ-functors from the abelian
category of inductive systems of abelian sheaves to the category of abelian
groups. To conclude the proof, it is enough to show that they are both
effaceable (because this implies they are universal, and universal δ-functors
are determined by their 0-th term).
To show effaceability, take a system (Fi)i and consider functorial flasque

resolutions of the Fi (such as the Godement resolution). Since filtered
colimits are exact and, on noetherian spaces, preserve flasqueness, this gives
rise to a flasque resolution of colimFi. With this at hand, it is not hard to
finish the proof. □

June 21,
2023Let X be a topological space, U ⊆ X open and Z = X \ U its closed

complement. Denote by j : U → X and i : Z → X the inclusions. Recall
the extension by zero functor j! : (AbU ) → (AbX) (which is left adjoint to
the pull-back j−1). From this adjunction and the one between i∗ and i∗ we
obtain the maps in the short exact sequence

0 → j!(F|U ) → F → i∗(F|Z) → 0

of abelian sheaves on X. The exactness can be checked on stalks where it is
clear.

Theorem 6.30. (Grothendieck) Let X be a noetherian topological space
(i.e., the descending chain condition holds for closed subsets of X), let
n = dimX, and let F be a sheaf of abelian groups on X. Then

H i(X,F ) = 0 for all i > n.

Proof. The proof is omitted in these notes. It consists of a series of reduction
steps using the above ingredients, ultimately reducing to the fact that the
cohomology of the constant sheaf ZX on an irreducible space vanishes in
positive degrees (since there a constant sheaf is flasque). See the references
given above for more. □

Čech cohomology.

Reference: [GW2] Sections (21.14) to (21.17), [H] III.4, [Stacks] 01ED (and
following sections); a classical reference is [Go].
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(6.10) Čech cohomology groups.

Let X be a topological space, and let F be an abelian sheaf on X. (The
definitions below can be made more generally for presheaves.)
Let U = (Ui)i∈I be an open cover of X. We fix a total order of the index

set I (but see below for a sketch that the results are independent of this).
For i0, . . . , ip ∈ I, we write Ui0...ip :=

⋂p
ν=0 Uiν .

We define

Cp(U ,F ) =
∏

i0<···<ip

Γ(Ui0...ip ,F )

and

d : Cp(U ,F ) → Cp+1(U ,F ), (si)i 7→

(
p+1∑
ν=0

(−1)νsi0...îν ...ip |Ui

)
i

,

where ·̂ indicates that the corresponding index is omitted. One checks that
d ◦ d = 0, so we obtain a complex, the so-called Čech complex for the cover
U with coefficients in F .June 26,

2023
Definition 6.31. The Čech cohomology groups for U with coefficients in
F are defined as

Ȟp(U ,F ) = Hp(C•(U ,F )), p ≥ 0.

Since F is a sheaf, we have Ȟ0(U ,F ) = Γ(X,F ) = H0(X,F ). In fact,
a presheaf F is a sheaf if and only if for all open subsets U ⊆ X and all
covers U of U the natural map Γ(U,F ) → Ȟ0(U ,F ) is an isomorphism.

(6.11) The “full” Čech complex.

Instead of the “alternating” (or “ordered”) Čech complex as above, we can
also consider the “full” Čech complex

Cp
f (U ,F ) =

∏
i0,...,ip

Γ(Ui0...ip ,F ),

with differentials defined by the same formula as above. Then the projection
C•
f (U ,F ) → C•(U ,F ) is a homotopy equivalence, with “homotopy inverse”

given by

(si)i 7→ (ti)i,

where ti = 0 whenever two entries in the multi-index i coincide, and otherwise
ti = sgn(σ)sσ(i), where σ is the permutation such that σ(i) is in increasing
order.
In particular, we have natural isomorphisms between the cohomology

groups of the two complexes. So we also see that the Čech cohomology
groups as defined above are independent of the choice of order on I.
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(6.12) Passing to refinements.

Definition 6.32. A refinement of a cover U = (Ui)i of X is a cover
V = (Vj)j∈J (with J totally ordered) together with a map λ : J → I respecting
the orders on I and J such that Vj ⊆ Uλ(j) for every j ∈ J .

Given a refinement V of U , one obtains a natural map (using restriction
of sections to smaller open subsets)

Ȟp(U ,F ) → Ȟp(V ,F ).

We can pass to the colimit over all these maps given by refinements, and
define

Ȟp(X,F ) := colim
U

Ȟp(U ,F ),

the p-th Čech cohomology group of X with coefficients in F . More precisely,
we here take the colimit over the category of refinements (see [GW2] Sec-
tion (F.3)). Working with the full Čech complex, one can view this as a
colimit over a partially ordered set “as usual”, for the cohomology groups and
even for the Čech complexes, if one considers them in the homotopy category
(i.e., the map between complexes attached to a refinement is independent
of λ up to homotopy), cf. [GW2] Section (21.16), also for the discussion of
set-theoretic issues.

Proposition 6.33. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence
of abelian sheaves on X. Then there exists a homomorphism δ : Γ(X,F ′′) →
Ȟ1(X,F ′) such that the sequence

0 →Γ(X,F ′) → Γ(X,F ) → Γ(X,F ′′)

→Ȟ1(X,F ′) → Ȟ1(X,F ) → Ȟ1(X,F ′′)

is exact. (But note that the sequence does not continue after Ȟ1(X,F ′′).)

Proof. This can be checked “directly”. For instance, to construct the con-
necting homomorphism δ, take an element s ∈ Γ(X,F ′′). Locally on X, we
can lift it to sections of F , so we obtain an element (si)i ∈ C1(U ,F ). Its
image (sij)i,j in C2(U ,F ) will usually be different from 0 (in fact it is = 0
if and only if s is in the image of Γ(X,F )), but has image 0 in C2(U ,F ′′),
and hence comes from an element (tij)i,j ∈ C2(U ,F ′). Then (tij)i,j has
image 0 in C3(U ,F ′) (because that is obviously true in C3(U ,F ) and the
morphism F ′ → F is injective), and so gives rise to a class in Ȟ1(U ,F ′).
Its image in Ȟ1(X,F ′) is the image of s under δ. One checks that this
procedure is independent of choices and gives rise to the exact sequence in
the proposition. □
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(6.13) Comparison of cohomology and Čech cohomology.

In degrees 0 and 1, cohomology and Čech cohomology coincide. For degree
0, we have already shown this, so we proceed to the case of degree 1. We
start with some preparations.
We define a sheaf version of the Čech complex as follows:

C p(U ,F ) =
∏

i=(i0<···<ip)

ji,∗(F|Ui
),

with differentials defined by (basically) the same formula as above. Here ji
denotes the inclusion Ui ↪→ X.
We have a natural map F → C 0(U ,F ), which on an open V is given by

s 7→ (s|Ui∩V )i.

Proposition 6.34. The sequence 0 → F → C 0(U ,F ) → C 1(U ,F ) →
· · · is exact.

Proof. The exactness can be checked on stalks, and one can show that for
each point of X, the stalks of the above complex form a complex that is
homotopy equivalent to 0. We omit the details. □

Proposition 6.35. If F is flasque, then all C p(U ,F ) are flasque, and
Ȟp(U ,F ) = 0 for all p > 0.

Proof. It is not hard to check that the sheaves C p(U ,F ) are flasque, since
all the constructions involved preserve flasqueness.
We then obtain

Ȟp(U ,F ) = Hp(Γ(C •(U ,F ))) = Hp(X,F ) = 0,

where the second equality holds since C •(U ,F ) is a flasque resolution of F
by the above, and the third one follows since F itself is flasque. □

Proposition 6.36. Let X be a topological space and let F be an abelian
sheaf on X.
(1) Let U be an open cover of X. For every i, there is a natural map

Ȟ i(U ,F ) → H i(X,F ).
(2) These maps are compatible with refinements, so we obtain a natural map

Ȟ i(X,F ) → H i(X,F ). These maps are functorial in F .
(3) For i = 0, 1, the natural map Ȟ i(X,F ) → H i(X,F ) is an isomorphism.

Proof. Part (1) follows from Proposition 6.17 applied to the resolution
C •(U ,F ) of F and any injective resolution. We omit the proof of Part (2).
For Part (3), it remains to consider the case i = 1. Embed F into a flasque

sheaf G . We obtain short exact sequences

Γ(X,G ) → Γ(X,G /F ) → Ȟ1(X,F ) → 0

by Proposition 6.33 Proposition 6.35 and

Γ(X,G ) → Γ(X,G /F ) → H1(X,F ) → 0
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since flasque sheaves are Γ(X,−)-acyclic. The statement follows from this.
□

One can also show that the natural map Ȟ2(X,F ) → H2(X,F ) is always
injective.
The following result will allow us to compute cohomology groups of sepa-

rated schemes with coefficients in quasi-coherent modules as Čech cohomol-
ogy.

Theorem 6.37. (Cartan’s Theorem) Let X be a ringed space, and let B be
a basis of the topology of X which is stable under finite intersections. Let
F be an OX-module. Assume that Ȟ i(U,F ) = 0 for all U ∈ B and i > 0.
Then

(1) we have H i(U,F ) = 0 for all U ∈ B and i > 0,

(2) The natural homomorphisms Ȟ i(U ,F ) → H i(X,F ) are isomorphisms
for all i ≥ 0 and all covers U of X consisting of elements of B.

(3) The natural homomorphisms Ȟ i(X,F ) → H i(X,F ) are isomorphisms
for all i ≥ 0.

See e.g., [Go] II Thm. 5.9.2, [Stacks] 01EO or [GW2] Section (21.17).

Cohomology of affine schemes.

General references: [H] Ch. III, [Stacks], [GW2] Chapter 22.
June 28,
2023

(6.14) Vanishing of cohomology of quasi-coherent sheaves on affine
schemes.

Theorem 6.38. Let X be an affine scheme, and let F be a quasi-coherent
OX-module. Then Ȟ i(X,F ) = 0 for all i > 0.

Proof. It is enough to show that Ȟ i(U ,F ) = 0 for all covers U of X
by principal open subsets. This can be proved using “direct computation”
(see [GW1] Lemma 12.33), or can be viewed as a consequence of the theory of
“faithfully flat descent” (specifically Problem 37, see also [GW1] Lemma 14.64).

□

From this theorem, it follows immediately (using the above results) that
H1(X,F ) = 0 for X affine and F quasi-coherent. In particular, the global
section functor on X preserves exactness of every short exact sequence where
the left hand term is a quasi-coherent OX -module. But using Cartan’s
Theorem, Theorem 6.37, we get more:

Theorem 6.39. Let X be an affine scheme, and let F be a quasi-coherent
OX-module. Then H i(X,F ) = 0 for all i > 0.
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Theorem 6.40. Let X be a separated scheme, and let U be a cover of X
by affine open subschemes. Let F be a quasi-coherent OX-module. Then the
natural homomorphisms Ȟ i(U ,F ) → H i(X,F ) are isomorphisms for all
i ≥ 0.

Remark 6.41. For X noetherian, the use of Cartan’s Theorem can be
avoided by using the result (see [H] III.3) that for a noetherian ring A,

X = SpecA, and I an injective A-module, the OX -module Ĩ is a flasque
OX -module.
Together with the fact that for an affine scheme X the global section

functor is exact on the category of quasi-coherent OX -modules, this gives
the vanishing of H i(X,F ) for X affine, F quasi-coherent and i > 0.
It also implies that any quasi-coherent OX -module on a noetherian scheme

can be embedded into a flasque quasi-coherent sheaf. From this one can
prove Theorem 6.40.
See [H] III.3, Theorem III.4.5; cf. also [GW2] Section (22.18).

Corollary 6.42. Let X be a separated scheme which can be covered by
n+ 1 affine open subschemes. Then H i(X,F ) = 0 for every quasi-coherent
OX-module F and every i > n.

Lemma 6.43. Let X be a scheme. For f ∈ Γ(X,OX) write

Xf = {x ∈ X; f(x) ̸= 0 ∈ κ(x)},
an open subset of X which we consider as an open subscheme.

If there exist f1, . . . , fn ∈ Γ(X,OX) such that Xfi is affine for i = 1, . . . , n
and such that f1, . . . , fn generate the unit ideal in the ring Γ(X,OX), then
X is affine.

Theorem 6.44. (Serre’s criterion for affineness) Let X be a quasi-compact
scheme. The following are equivalent:
(i) The scheme X is affine.
(ii) For every quasi-coherent OX-module F and every i > 0, H i(X,F ) = 0.
(iii) For every quasi-coherent ideal sheaf I ⊆ OX , H1(X,I ) = 0.

Proof. See [H] Theorem III.3.7 or [GW1] Theorem 12.35. □

Cohomology of projective schemes.

(6.15) The cohomology of line bundles on projective space.

References: [H] III.5, [GW2] Section (22.6), [Stacks] 01XS.
July 3,
2023 Using Čech cohomology, we can compute the cohomology of line bundles

on projective space. It is best to aggregate the results for all O(d), as we
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have already seen for their global sections, a result which we repeat as the
first statement below.

Theorem 6.45. Let A be a ring, n ≥ 1, S = A[T0, . . . , Tn], X = Pn
A.

Then

(1) There is a natural isomorphism S ∼=
⊕

d∈ZH
0(X,O(d)).

(2) For i ̸= 0, n and all d ∈ Z we have H i(X,O(d)) = 0.
(3) There is a natural isomorphism Hn(X,O(−n− 1)) ∼= A.
(4) For every d, there is a perfect pairing

H0(X,O(d))×Hn(X,O(−d− n− 1)) → Hn(X,O(−n− 1)) ∼= A,

i.e., a bilinear map which induces isomorphisms

H0(X,O(d)) ∼= Hn(X,O(−d− n− 1))∨

and

H0(X,O(d))∨ ∼= Hn(X,O(−d− n− 1))

(where −∨ = HomA(−, A) denotes the A-module dual).

Sketch of proof. We compute the cohomology groups as Čech cohomology
groups for the standard cover U = (D+(Ti))i of Pn

A. It simplifies the
reasoning to do the computation for all O(d) at once, i.e., to compute the
cohomology groups of F :=

⊕
d∈Z O(d) (and to – implicitly – keep track

of the grading by d). Since cohomology is compatible with direct sums
(cf. Proposition 6.29; we proved that for noetherian schemes, but it holds
more generally for quasi-compact separated schemes, cf. [GW2] Corollary
21.56), this also gives the result for the individual O(d).
The Čech complex C•(U ,F ) is

0 →
∏
i

STi →
∏
i,j

STiTj → · · · → ST0···Tn → 0

(with non-zero entries in degrees 0, . . . , n), cf. the computation of the global
sections of the sheaves O(d), Proposition 3.19. Also note that that proposition
proves Part (1) of the theorem here. From this, we see that we can identify

Hn(Pn
A,F ) =

⊕
i0,...,in<0

A · T i0
0 · · ·T in

n ⊆ S[T−1
0 , . . . , T−1

n ].

This easily implies Parts (3) and (4).
It remains to prove the vanishing statement of Part (2) for 0 < i < n. We

do this by induction on n. Note that in view of Part (1), all the cohomology
groups H i(Pn

A,F ) carry a natural S-module structure.
First note that for the localization we have H i(Pn

A,F )Tn = 0. In fact,

this localization is the i-th cohomology group of the localized Čech complex
C•(U ,F )Tn which computes the cohomology H•(D+(Tn),F|D+(Tn)) which
vanishes in positive degrees. Therefore it suffices to show that multiplication
by Tn is a bijection H i(Pn

A,F ) → H i(Pn
A,F ) for all 0 < i < n.
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The global section Tn ∈ H0(Pn
A,O(1)) gives rise to a short exact sequence

0 → O(−1) → OPn
A
→ OV+(Tn) → 0,

and tensoring with the locally free module F we obtain a short exact sequence

0 → F ⊗ O(−1) → F → F ′ → 0

where F ′ = F ⊗OPn
A

OV+(Tn) is (the push-forward from V+(Tn) ∼= Pn−1
A to

Pn
A) of the sheaf analogous to F on Pn−1

A .
Multiplication by Tn ∈ Γ(Pn

A,O(1)) gives an isomorphism F⊗O(−1) → F .
Therefore the long exact cohomology sequence attached to the above short
exact sequence can be written as

· · · → H i(Pn
A,F ) → H i(Pn

A,F ) → H i(Pn−1
A ,F ′) → · · ·

where the maps H i(Pn
A,F ) → H i(Pn

A,F ) are given by multiplication by
Tn (i.e., what we want to show is that these maps are isomorphisms). The
induction hypothesis together with Lemma 6.28 and the observations that the
mapH0(Pn

A,F ) → H0(Pn−1
A ,F ′) is surjective (cf. Part (1)) and that the map

Hn−1(Pn−1
A ,F ′) → Hn(Pn

A,F ) is injective, then allow us to conclude. For
the injectivity cf. the above proof for Part (3). Looking at individual graded
pieces of Hn−1(Pn−1

A ,F ′) and the kernel of Hn(Pn
A,F ) → Hn(Pn

A,F ), we
have a surjective homomorphism of free A-modules of the same rank which
is necessarily an isomorphism. (The kernel of Hn(Pn

A,F ) → Hn(Pn
A,F ) is

the free A-module spanned by all monomials of the form T i0
0 · · ·T in−1

n−1 T
−1
n

with all iν < 0.) □

Remark 6.46. The homomorphism Hn−1(Pn−1
A ,F ′) → Hn(Pn

A,F ) at the

end of the proof of the previous theorem is given by mapping T i0
0 · · ·T in−1

n−1 to

T i0
0 · · ·T in−1

n−1 T
−1
n . To verify this, one can use that the long exact cohomology

sequence for the short exact sequence 0 → F ⊗ O(−1) → F → F ′ → 0 can
be computed in terms of Čech cohomology, namely as the long exact sequence
attached to the (exact!) sequence 0 → C•(U ,F ⊗ O(−1)) → C•(U ,F ) →
C•(U ,F ′) → 0.

(6.16) Finiteness of cohomology of coherent OX-modules on projec-
tive schemes.

References: [H] III.5; [GW2] Sections (23.1), (23.2).
July 5,
2023 Definition 6.47. Let X be a noetherian scheme. An OX-module F is

called coherent, if it is quasi-coherent and of finite type.

Let A be a noetherian ring. For an OPn
A
-module F , we write F (d) :=

F ⊗OPn
A

O(d). We need the following general lemma.
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Lemma 6.48. Let X be a quasi-compact and separated scheme, let L be an
invertible OX-module, and let s ∈ Γ(X,L ) be a global section. Let F be a
quasi-coherent OX-module.

(1) Let t ∈ Γ(X,F ) be a global section such that t|Xs = 0. Then there exists

an integer n > 0 such that t⊗ s⊗n = 0 ∈ Γ(X,F ⊗ L ⊗n).

(2) For every section t′ ∈ Γ(Xs,F ) there exist n > 0 and a section t ∈
Γ(X,F ⊗ L ⊗n) such that t|Xs = t′ ⊗ s⊗n.

Proof. If X is affine and L = OX , then this follows immediately from our
results on quasi-coherent OX -modules; namely we know that then Γ(Xs,F ) =
Γ(X,F )s. For the general case, let X =

⋃
i Ui be a finite affine open cover

such that L|Ui
∼= OUi for all i (and fix such isomorphisms). Then (1) can be

checked on each Ui individually and thus follows from what was said in the
beginning. To prove Part (2), we construct t by considering sections ti on
the Ui obtained from the restrictions t|Ui∩Xs

, using the result in the affine
case. The ti may not glue, but applying Part (1) to the intersections Ui ∩Uj

and the elements ti|Ui∩Uj
− tj|Ui∩Uj

we find that for n sufficiently large, the

ti ⊗ s⊗n will glue to a section of F ⊗ L ⊗n. See [GW1] Theorem 7.22 or [H]
Lemma II.5.14 for more details. □

Proposition 6.49. Let A be a noetherian ring, n ≥ 1, let X = Pn
A, and let

F be a coherent OX-module.

(1) There exist integers d1, . . . , ds and a surjective OX-module homomorphism

n⊕
i=1

O(di) ↠ F .

(2) For d sufficiently large, the OPn
A
-module F (d) is globally generated, i.e.,

there exist N ≥ 0 and a surjective homomorphism ON
Pn
A
→ F (d).

Sketch of proof. It is easy to see that (1) and (2) are equivalent. We prove (2).

For i ∈ {0, . . . , n}, F|D+(Ti) has the form M̃i for some finitely generated

A[T0
Ti
, · · · , Tn

Ti
]-module Mi. For any s ∈Mi = Γ(D+(Ti),F ), for d sufficiently

large, Xd
i s extends to a global section of F (d), by Lemma 6.48. This implies

the claim. □

Theorem 6.50. Let A be a noetherian ring, X be a projective A-scheme,
and let F be a coherent OX-module. Then for all i ≥ 0, the A-module
H i(X,F ) is finitely generated.

Sketch of proof. Using Lemma 6.28, we reduce to the case that X = Pn
A.

By Proposition 6.49, the vanishing result Corollary 6.42 and descending
induction, we may further reduce to the case that F is a finite direct sum of
sheaves of the form O(d), but for these we already know the result. □
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At this point it is not hard to prove that higher derived images Rif∗F of
a coherent OX -module under a projective morphism f : X → Y are coherent
(see [H] III.8).

Another useful result is the following vanishing statement.

Proposition 6.51. Let A be a noetherian ring, ι : X → Pn
A a closed im-

mersion, L = ι∗OPn
A
(1), and let F be a coherent OX-module. For n ∈ Z

we write F (n) := F ⊗OX
L ⊗n. Then there exists n0 ∈ Z such that for all

n ≥ n0 and all i > 0, we have H i(X,F (n)) = 0.

Sketch of proof. Using the projection formula (see below), one reduces to
the case X = Pn

A. It is then clear from the above, that the statement holds
whenever F is a direct sum of line bundles O(d). The general statement
follows from this by descending induction, similarly as above. □

Proposition 6.52. (Projection formula) Let f : X → Y be a morphism of
schemes, let F be an OX-module, and let G be an OY -module. There is a
natural homomorphism

(f∗F )⊗OY
G → f∗(F ⊗OX

f∗G )

which is an isomorphism if one of the following conditions is satisfied:

(1) G is a locally free OY -module,
(2) f is a closed immersion,
(3) F and G are quasi-coherent, and for every affine open V ⊆ Y , f−1(V )

is affine,
(4) F and G are quasi-coherent, f is quasi-compact and separated, and G

is a flat OY -module.

Sketch of proof. The homomorphism is obtained formally using the adjunc-
tion between f∗ and f∗. The statement that it is an isomorphism is local on
Y . Thus for (1), we may assume that G is free, and then the claim is easy
to check. In situation (2) one can check that the homomorphism induces
an isomorphism on each stalk, and hence is an isomorphism. Under the
assumptions in (3), one may assume that Y and X are affine and the claim
then follows easily from the description of pushforward and pullback in this
case (Proposition 2.15). For further details, and for an argument to prove
the statement in case (4), see [GW2] Proposition 22.80. □

Serre duality.

July 10,
2023

(6.17) The Theorem of Riemann–Roch revisited.

References: [H] III.7, IV.1; [GW2] Chapters 25, 26.
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Recall the Theorem of Riemann–Roch that we stated above (Theorem 3.13).
In this section, we prove a preliminary version, which also gives a more
conceptual view on the “error term” dimΓ(X,O(K −D)) (with notation as
above).
Let k be an algebraically closed field.

Definition 6.53. Let X be a projective k-scheme, and let F be a coherent
OX-module. We call

χ(F ) =
∑
i≥0

(−1)i dimkH
i(X,F )

the Euler characteristic of F .

Note that the sum is finite (by the Grothendieck vanishing theorem,
Theorem 6.30) and that each term is finite by the results of the previous
section.
Now let X/k be a smooth, projective, connected curve. Then χ(F ) =

dimkH
0(X,F )− dimkH

1(X,F ).
The following theorem is the preliminary version of the Theorem of

Riemann–Roch mentioned above.

Theorem 6.54. Let L be a line bundle on X. Then

χ(L ) = deg(L ) + χ(OX).

Sketch of proof. The statement is clear for L = OX . Since every line bundle
is isomorphic to the line bundle attached to a Weil divisor, it is therefore
enough to prove that for every closed point x ∈ X, and every line bundle L
on X, we have

χ(L ) = χ(L ⊗OX
OX(−[x])) + 1

We write L (D) := L ⊗OX
OX(D) for any divisor D. The short exact

sequence
0 → OX(−[x]) → OX → κ(x) → 0

remains exact after tensoring with L , so we obtain a short exact sequence

0 → L (−[x]) → L → κ(x) → 0.

Since the Euler characteristic is additive in short exact sequences (use the long
exact cohomology sequence) and since χ(κ(x)) = 1, the claim follows. □

Now we can define the genus of X as g := 1− χ(OX) = dimkH
1(X,OX).

From the above, we immediately get

Corollary 6.55. (Theorem of Riemann) Let L be a line bundle on X.
Then

dimkH
0(X,L ) ≥ deg(L ) + 1− g.

Furthermore, the Theorem of Riemann–Roch, Theorem 3.13, follows from
the above result on Euler characteristics and the Serre duality theorem
(which however we cannot prove in this class).
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Theorem 6.56. (Serre duality) Let k be an algebraically closed field and
let X be a connected smooth proper k-scheme. (At this point we can take
smooth to mean that all local rings OX,x are regular; in fact it is enough
to assume that X is Cohen-Macaulay, i.e., that all local rings of X are
Cohen-Macaulay rings.) There is a unique (up to isomorphism) coherent
OX-module ω, the so-called dualizing sheaf, such that for every locally free
OX-module E of finite rank on X, there is a natural isomorphismJuly 12,

2023
Hn−i(X,E ) ∼= H i(X,E −1 ⊗ ω)∨

of k-vector spaces (where −∨ denotes the dual k-vector space).

If X is smooth over k, then the dualizing sheaf is a line bundle and coincides
with the so-called canonical bundle, the top exterior power of the sheaf Ω1

X/k

of differentials of X over k, see Chapter 4.
A fairly elementary approach in the case where X is projective is to prove

a similar duality theorem for the cohomology of line bundles on projec-
tive space Pn

k (this we have basically done above, Theorem 6.45 (4), with
ω = O(−n − 1)), and then to derive the statement for (certain) closed
subschemes of projective space; see [H] III.7. A more general (but techni-
cally more sophisticated) approach is to derive this duality result from the
existence of a right adjoint functor f× of the derived push-forward functor
Rf∗ : Dqcoh(X) → Dqcoh(Spec k), where f : X → Spec k is the structure
morphism and Dqcoh(X) denotes the full triangulated subcategory of the
derived category D(X) of the category of OX -modules (and this generalizes
to the case of arbitrary proper morphisms f between noetherian schemes).
In fact, one shows that for X Cohen-Macaulay and equidimensional of di-
mension n the complex f×k is concentrated in degree −n, and we denote
by ω the unique non-vanishing cohomology object. For every quasi-coherent
OX -module F and integer i one then has

H i(X,F )∨ = Homk(Rf∗F [i], k) = HomD(X)(F [i], ω[n])

= Extn−i
OX

(F , ω),

and if F is locally free of finite rank, then we can identify the right hand
side with

Extn−i
OX

(OX ,F
∨ ⊗OX

ω) = Hn−i(X,F∨ ⊗OX
ω).

This approach also gives a result (in terms of the derived category) without
requiring that X be Cohen-Macaulay, and also for (proper) morphisms
f : X → Y where Y is not necessarily the spectrum of a field. See [GW2]
Chapter 25 for more on this and for further references.
As another application of Serre duality, we mention the following result.

The first part is named the Lemma of Enriques-Severi-Zariski. To name an
application, we note that this is one of the ingredients of the proof that every
regular proper surface over a field is projective (see [GW2] Theorem 25.151).
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The result still holds (but in Part (1) only for H1, as stated, while for
X Cohen-Macaulay one has an analogous result for all H i, i < n) if the
assumption that X be Cohen-Macaulay is replaced by the assumption that X
is normal (i.e., for every non-empty affine open U ⊆ X, the ring Γ(U,OX) is
integrally closed in its field of fractions K(X)). On the other hand it is clear
that the assumption that X has dimension at least 2 cannot be dropped.

Theorem 6.57. Let K be an (algebraically closed) field, let X be an integral
Cohen-Macaulay (e.g., smooth) projective k-scheme and let ι : X → Pn

k be a
closed immersion of k-schemes.
Assume that dimX ≥ 2.

(1) Fix d > 0 and let L := ι∗OPn
k
(d). Let F be a coherent OX-module. We

write F (n) := F ⊗OX
L ⊗n, n ∈ Z. Then for n≪ 0, H1(X,F (n)) = 0.

(2) Let f ∈ k[T0, . . . , Tn] be a non-constant homogeneous polynomial, and let
Z := V+(f), a closed subscheme of Pn

k . Then X ∩ Z is connected.

Sketch of proof. Part (1) follows from Serre duality (Theorem 6.56) and the
vanishing result of Proposition 6.51. To prove Part (2), let d denote the
degree of f . We view Z as an effective Cartier divisor. Then OPn

k
(Z) ∼= O(d).

We set L = ι∗O(d) and F = OX and apply Part (1) to find n such that
H1(X,L −n) = 0. Let Zn be the Cartier divisor n · Z (with associated line
bundle ∼= O(dn)). We then have a short exact sequence

0 → L −n → OX → OX∩Zn → 0,

where X ∩ Zn denotes the scheme-theoretic intersection of X and Z, i.e.,
OX∩Zn = ι∗OZn . The underlying topological space of X ∩ Zn is independent
of n ≥ 1 and equals the set-theoretic intersection X ∩ Z. It is therefore
sufficient to show that the scheme X ∩Zn is connected. But the above short
exact sequence induces, in view of the vanishing of H1(X,L −n) given by
Part (1), a surjective homomorphism Γ(X,OX) → Γ(X,OX∩Zn) of k-vector
spaces. Since Γ(X,OX) = k, it follows that Γ(X,OX∩Zn) = k, as well, and
in particular X ∩ Zn is connected. See also [GW2] Section (25.28), [H]
Section III.7. □
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