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1. Introduction Oct. 14, 2025
We will start with a relatively long introductory chapter, in order to …
• provide some motivation for the (partly more technical) content that
will come later,
• give those participants who were not in the Algebra 2 class last term
a little more time to brush up their commutative algebra knowledge:
– (Prime) ideals, quotients
– localization (with respect to a multiplicative subset; in particular
with respect to one element and localization at a prime ideal),

– spectrum of a ring, Zariski topology (this we will redo in the
class, but ideally you are already a little familiar with the notion
of topological space.

I will try to address the question What is algebraic geometry?, and at the
same time give, towards the end of the chapter, a rough survey of this class.

(1.1) What Algebraic Geometry is about.

In one sentence: Study “geometric properties” of solution sets of systems of
polynomial equations (over a field, or more generally a commutative ring).

Example 1.1.
{(x, y) ∈ R2 | y2 = x2(x+ 1)} ⊂ R2.

Comparison with Previous/Other Courses
Linear Algebra Systems of linear equations
Algebra polynomial equations (1 variable, 1 polynomial)
Algebraic Geometry systems of polynomial equations
Algebraic Number Theory …coefficients/solutions in Z,Q,K/Q fin.,Fq

Here algebraic refers to the fact that we
• study solution sets (zero sets) of polynomials (not power series,
differential/holomorphic functions, etc.),

Date: January 26, 2026.
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• use algebraic methods (specifically commutative algebra) to study
these objects.

In particular, at least in principle, we may hence work over an arbitrary field
(not only R or C).

(1.2) The Cayley–Hamilton Theorem: A Geometric View.

Theorem 1.2. [Cayley–Hamilton] Let k be a field, A ∈ Mn(k). Then
charpolA(A) = 0.

We want to look at this result from the perspective of an algebraic geometer,
i.e., we view Mn(k) as n-dimensional (vector) space.
Let us consider the case k = R, n = 2 and restrict to matrices A with

trace tr(A) = 0. (This does not change the main argument, but simplifies
the discussion a little bit and will allow us to draw a picture later.)
We want to use that the theorem is obviously true, if A is a diagonal

matrix. From this, it follows easily that the theorem holds whenever A
is diagonalizable. In fact, if A = SDS−1 for a diagonal matrix D, then
charpolA = charpolD. Since conjugation is a ring automorphism of the ring
of matrices (over any ring), we may “pull it out” of any polynomial. Together
we obtain

charpolA(A) = charpolD(SAS
−1) = S charpolD(D)S−1,

and the term on the right vanishes, since charpolD(D) = 0 by the case of
diagonal matrices. Furthermore, in this argument we may just as well allow
matrices S with entries in some extension field of k, and we see that it suffices
to assume that A is diagonalizable over C. But of course, there are also
non-diagonalizable matrices.
So we consider a matrix

A =

(
a b
c −a

)
∈M2(R)tr=0 ∼= R3,

where we use a, b, c as coordinates on R3. We then have

charpolA = (T − a)(T + a)− bc = T 2 − (a2 + bc).

In particular we see that all matrices A =

(
a b
c −a

)
with a2 + bc 6= 0 are

diagonalizable over C. On the other hand, if a2 + bc = 0, then A is not
necessarily diagonalizable.
We now consider the map:

χ :M2(R)tr=0 →M2(R), A 7→ charpolA .

Our goal is to show that the map χ is constant with image the zero matrix.
By what we have said, χ(A) = 0 for all those A that are diagonalizable over
C.
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Since the map χ : R3 → R4 is given by polynomials, it is continuous.
Therefore for every closed subset of R4, its inverse image under χ is again
closed. We apply this to the set {0} containing only the zero matrix; clearly
this is a closed set. Its inverse image contains, by what we know already, all
those traceless matrices that are diagonalizable over C, and in particular all

matrices
(
a b
c −a

)
with a2 + bc 6= 0. But this set is dense in M2(R)tr=0, i.e.,

its closure is the whole space. It follows that χ−1({0}) =M2(R)tr=0, as we
wanted to show.
The same argument, with small modifications, applies when we drop the

condition on the trace, and also for square matrices of arbitrary size.

Question: How to deal with other fields?
For this, we need a notion of continuous map in a more general context.

(1.3) The Zariski topology on kn.

Let k be a field. Since we want to study solution sets of systems of polynomial
equations, we introduce the following notation:
Definition 1.3.

(1) Given f1, . . . , fm ∈ k[T1, . . . , Tn], we define the vanishing set (in
German: Verschwindungsmenge)

V (f1, . . . , fm) := {(ti) ∈ kn; fj(t1, . . . , tn) = 0 ∀j}.
(2) More generally, for any subset F ⊂ k[T1, . . . , Tn], we define the

vanishing set of F as
V (F) = {(ti) ∈ kn; f(t1, . . . , tn) = 0 ∀f ∈ F}.

If k′/k is a field extension, then we set
V (f1, . . . , fm)(k

′) := {(ti) ∈ (k′)n; fj(ti) = 0 ∀j},
and analogously define V (F)(k′).
Remark 1.4. Let F ⊂ k[T1, . . . , Tn], and let a ⊂ k[T•] be the ideal
generated by F . Then V (F) = V (a), as is easily checked. From this it also
follows that

V (F) = V (a) = V (f1, . . . , fm),

whenever f1, . . . , fm is a generating system for the ideal a. By Hilbert’s Basis
Theorem, every ideal in k[T1, . . . , Tn] admits a finite generating system. (We
say that the polynomial ring in finitely many variables over a field, or more
generally over any noetherian ring, is noetherian.) Therefore, every vanishing
set V (F ) can be written in the form V (f1, . . . , fm) for finitely many, suitably
chosen polynomials fj .

Proposition 1.5. The sets V (F), F ⊂ k[T•], form the closed sets of a
topology on kn, the Zariski topology.
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Spelled out explicitly, this means that
(1) ∅, kn are of this form,
(2) finite unions of such sets are again of this form,
(3) arbitrary intersections of such sets are of this form.

Proof. (1) We have ∅ = V (1), kn = V (0).
(2) By induction, it is enough to consider the union of two closed subsets,

say V (F) and V (G). But

V (F) ∪ V (G) = V (fg; f ∈ F , g ∈ G).

In fact, the inclusion ⊆ is clear. For the other inclusion, take a point t in
the right hand side which does not lie in V (F). That means f(t) 6= 0 for
some f ∈ F . But since f(t)g(t) = (fg)(t) = 0 for all g ∈ G, it follows, that
t ∈ V (G).
(3) For Fj ⊆ k[T1, . . . , Tn], j ∈ J , we have

⋂
j∈J

V (Fj) = V

⋃
j∈J
Fj

 .

�

Definition 1.6. The topological space kn with the Zariski topology is denoted
by An(k) and called affine space (over k, of dimension n).

(1.4) Bézout’s Theorem.

Next, let us look at Bézout’s theorem, a relatively elementary, but stillOct. 15, 2025
non-trivial result in algebraic geometry which at the same time illustrates a
typical type of question asked in this theory and several methods that are
crucial in (almost) all of algebraic geometry. In particular, it will serve as a
motivation for introducing the so-called projective space, see Section (1.5).
Let k be a field. For a polynomial f ∈ k[X,Y ], as before we write

V (f) =
{
(x, y) ∈ k2; f(x, y) = 0

}
,

and call this set the vanishing set of f .
We want to study what we can say, given two such polynomials f , g, about

the set V (f) ∩ V (g). More specifically, examples show that typically, this
is a finite set, and it is a natural question whether we can determine its
cardinality. We start with the following observations:
(1) For a polynomial p ∈ k[X], n = deg(p) > 0, we have

# {x ∈ k; p(x) = 0} ≤ n,

with equality if k is algebraically closed and if we count each zero x of p
with its multiplicity ordx(p) = max {r; (X − x)r | p}.
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(2) Let p ∈ k[X] non-constant and let f = Y − p(X), g = Y . We then have
a bijection

{x ∈ k; p(x) = 0} ←→ V (f) ∩ V (g), x 7→ (x, 0).

Coming back to the general case, let f, g ∈ k[X,Y ]. Recall that k[X,Y ] is
a unique factorization domain. It is easy to see that in case f and g have a
common divisor of positive degree, then V (f)∩V (g) is infinite, at least when
k is algebraically closed. Since here we are interested in counting points,
we rule out that case, and require that f , g are coprime. For a polynomial
f ∈ k[X,Y ], we denote by deg(f) its total degree, i.e., for f =

∑
i,j aijX

iY j ,
deg(f) = max {i+ j; aij 6= 0}.

Proposition 1.7. Let k be a field, and let f, g ∈ k[X,Y ] be coprime,
non-constant polynomials. Then

#(V (f) ∩ V (g)) ≤ deg(f) · deg(g).

We will prove this result later, in an improved form. For now, our goal
is to discuss this “improved form”, by which we mean a refined statement
where we actually have equality.
Looking back at the case of a single-variable polynomial p above, it is

reasonable to require that k is algebraically closed, and also to expect that
we will have to count intersection points with their correct “multiplicity”. It
is not so hard to write down the definition of multiplicity that will work; we
will discuss this in more detail later.

Definition 1.8. [Local intersection multiplicity] Let k be a field, f, g ∈
k[X,Y ], P = (x, y) ∈ k2 a point. Let m = (X − x, Y − y) ⊂ k[X,Y ] (a
maximal ideal of the polynomial ring). Then we define

iP (f, g) = dimk k[X,Y ]m/(f, g),

where k[X,Y ]m denotes the localization at m (i.e., the localization with
respect to the multiplicative subset k[X,Y ] \m). (Note that the intersection
multiplicity depends on the polynomials f , g; not just on their vanishing
sets.)

However, looking at the case where V (f) and V (g) are parallel lines in k2
(e.g., f = Y , g = Y − 1), we see that these changes are not enough in order
to obtain equality.

(1.5) The projective plane P2(k).

Idea. Add points to k2 so that any two different lines intersect in a point.
(While this at first may feel like cheating, it turns out that the resulting
construction is extremely useful in algebraic geometry, far beyond Bézout’s
theorem, also in the sense that it will allow to come back and answer questions
that do not mention the newly constructed space.) Setting up the theory
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will also involve suitably modifying the notion of line; we will come to that
later, and then also relate it to lines in k2.

Definition 1.9. Let k be a field. We define the projective plane P2(k) over
k, as a set, as

P2(k) := {L ⊂ k3 linear subspace of dimension 1},
the set of all lines through the origin in k3.

Viewing k2 as the affine plane
{
(x, y, 1) ∈ k3; x, y ∈ k

}
in k3, every line

through the origin in k3 which is not contained in the x-y-plane intersects
k2 in exactly one point. Thus we obtain an injective map k2 → P2(k) which
we may also write as

k2 −→ P2(k), (x, y) 7→

〈xy
1

〉 .
In this way, we may view P2(k) as “k2 with some points added”, namely the
lines in the x-y-plane (note that thus for any equivalence class of parallel
lines in k2 we have one additional point, and it will turn out that this point
“is” (in a sense that we yet must define) the missing intersection point of
these parallel lines).
Usually we denote elements of P2(k) in terms of their homogeneous coordinates
which we are going to define next. (That also facilitates, hopefully, to think
of elements of P2(k), typically, as points of some space rather than as lines
in some other space, similarly as we think of the elements of k2 as points in
the plane.)
For (x, y, z), (x′, y′, z′) ∈ k3 \ {0}, define:

(x, y, z) ∼ (x′, y′, z′) ⇐⇒

〈xy
z

〉 =

〈x′y′
z′

〉

⇐⇒ ∃λ ∈ k× : (x′, y′, z′) = λ(x, y, z).

This is an equivalence relation on k3 \ {0}. We denote by (x : y : z) the
equivalence class of (x, y, z) and obtain a bijection

(k3 \ {0})/ ∼ 1:1−−−→ P2(k), (x : y : z) 7→

〈xy
z

〉 .
Our next task is to define a suitable notion of line in the projective plane.

The resulting notion should satisfy (at least) the properties that through
any two distinct points, there is a unique line; and that any two distinct
lines intersect in a unique point (because our goal was a situation where
there are no more “parallel lines”). For the definition, however, a general
construction is better suited, namely an analog of the notion of vanishing
set of polynomials. However, we have to be careful here, because for an
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arbitrary polynomial F ∈ k[X,Y, Z] the value on a point (x : y : z) given in
homogeneous coordinates is obviously not well-defined, but will depend on
the choice of representative. On the other hand, in order to define vanishing
sets, we do not need to compute values, but only need to check whether the
outcome is = 0 or 6= 0. Even this is not possible for general polynomials, but
it is possible for the class of homogeneous polynomials, which is still large
enough to give all that we need. We give the definition in a general form.

Definition 1.10. Let R be a ring. A polynomial F ∈ R[X0, . . . , Xn] is
called homogeneous of degree d, if it can be written as a (finite) linear
combination of monomials of degree d, i.e., in the form

F =
∑
i0,...,in

ai0,...,inX
i0
0 · · ·X

in
n

with ai0,...,in ∈ R and ai0,...,in = 0 whenever i0 + · · ·+ in 6= d.

Lemma 1.11. Let R be a ring, and let F ∈ R[X0, . . . , Xn] be homogeneous
of degree d. Then for all λ, x0, . . . , xn ∈ R, we have

F (λx0, . . . , λxn) = λdF (x0, . . . , xn).

If R is an infinite field, then the converse is true, as well.

Proof. The first statement is clear. The second one follows (how?) from the
fact that over an infinite field, the zero polynomial is the only polynomial in
n+ 2 variables which vanishes at every point of kn+2. �

Therefore we may define the vanishing set of a homogeneous polynomial,
and more generally, the common vanishing set of a family of homogeneous
polynomials (possibly of different degrees). We will look at several explicit
examples soon.

Definition 1.12. Let F ⊆ k[X,Y, Z] be a set of homogeneous polynomials.
We define the vanishing set as

V+(F) = {(x : y : z); F (x, y, z) = 0 for all F ∈ F} ⊆ P2(k).

Similarly as for kn, one proves the following. Oct. 21, 2025

Proposition 1.13. The sets of the form V+(F), F ⊆ k[X,Y, Z] a set of
homogeneous polynomials, form the closed sets of a topology on P2(k), the
so-called Zariski topology.

Lines in P2(k). We can now define the notion of line in the projective plane
and conclude this section by stating the final form of Bézout’t theorem.

Definition 1.14. Let k be a field. A line in P2(k) is a subset of the form
V+(F ) for a non-zero homogeneous polynomial of degree 1.

Explicitly, F as in the definition has the form aX+bY +cZ, with (a, b, c) 6=
(0, 0, 0). For example V+(Z) = P2(k) \ ι(k2) (where ι : k2 → P2(k) is the
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embedding defined above) is a line. This line is called the line at infinity
(with respect to our chosen embedding k2 ⊂ P2(k)).

Proposition 1.15.
(1) Let P1, P2 ∈ P2(k), P1 6= P2. Then there exists F ∈ k[X,Y, Z] homoge-

neous of degree 1, F 6= 0, such that P1, P2 ∈ V+(F ), and F is uniquely
determined up to multiplication by an element λ ∈ k×.

(2) For non-zero linear homogeneous polynomials F1, F2 ∈ k[X,Y, Z], we
have

V+(F1) = V+(F2) ⇐⇒ there exists λ ∈ k× : F2 = λF1.

(3) Let F1, F2 ∈ k[X,Y, Z] be non-zero linear homogeneous polynomials with
V+(F1) 6= V+(F2). Then the set V+(F1) ∩ V+(F2) consists of exactly one
element.

Proof. (1) Phrase the problem as a system of linear equations on the coeffi-
cients of F . We obtain a system with two linearly independent equations
and three variables, so the space of solutions is 1-dimensional.
(2) This follows from Part (1) (because any V+(F1) contains at least 2

points (more precisely: #k + 1 points)).
(3) Similarly as Part (1) this can be shown by considering a suitable system

of linear equations, where the coefficients are given by the coefficients of the
equations of F1 and F2, and the variables correspond to the homogeneous
coordinates of the point(s) we are looking for in the intersection. �

We can now state the final version of Bézout’s theorem. Here, iP (F,G) is
defined similarly as above. (As before, it depends on the actual polynomials
F , G, not just on their vanishing sets.) We will come back to this, and also
give a proof of the theorem, later in the course.

Theorem 1.16. [Bézout] Let F,G ∈ k[X,Y, Z] be non-constant coprime
homogeneous polynomials. Then∑

P∈V+(F )∩V+(G)

iP (F,G) = deg(F ) · deg(G),

in particular #(V+(F ) ∩ V+(G)) ≤ deg(F ) · deg(G).

Similarly to the projective plane, we can analogously define projective space
of dimension n over k,

Pn(k) = (kn+1 \ {0})/ ∼,

where (x0, . . . , xn) ∼ (x′0, . . . , x
′
n) if there exists λ ∈ k× such that x′i = λxi

for all i.

(1.6) Homogenization and dehomogenization of polynomials.

Let us look at the relationship between vanishing sets in k2 and in P2(k).
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Remark 1.17. Let F ∈ k[X,Y, Z] be a homogeneous polynomial. Then
V+(F ) ∩ V+(Z) = V+(F,Z) and thus we can write V+(F ) as the disjoint
union

V+(F ) = (V+(F ) ∩ ι(k2)) t V+(F,Z).

Furthermore, under the identification k2
1:1−−→ ι(k2), V+(F ) ∩ ι(k2) is in

bijection with V (f) for f = F (x, y, 1) ∈ k[x, y]. Here f is a polynomial of
degree ≤ deg(F ), with equality, if F is not divisible by Z.

Conversely, given a polynomial f ∈ k[x, y] we can easily find a homogeneous
polynomial such that f(x, y) = F (X,Y, 1) (and hence, by the above remark,
V (f) = V+(F ) ∩ ι(k2), or in other words, V+(F ) consists of V (f) and
(possibly) further points lying on the line at infinity V+(Z)).

Namely, we just “fill in powers of Z” so as to construct a homogeneous
polynomial of degree deg(f). For example, for f = y2−x3+x+1, we would
take F = Y 2Z − X3 + XZ2 + Z3. Generally, given f =

∑
i,j ai,jx

iyj of
degree d, take F =

∑
i,j ai,jX

iY jZd−i−j . We call F the dehomogenization
(of degree d) of f .

Note that for f and F related in this way, the polynomial G = Z · F still
has the property that G(x, y, 1) = f(x, y), however V+(G) = V+(F )∪V+(Z),
i.e., we get an “unnecessary” (and unwanted) copy of the line at infinity.

(1.7) More examples.

Let k be a field, char(k) 6= 2. A vanishing set V (f) ⊂ A2(k) for a
polynomial f of degree 3 is called a cubic curve. Oct. 22, 2025

Example 1.18. Consider C = V (f) ⊂ A2(k) with

f = y2 − (x+ 1)(x2 + 1).

We have

∂f

∂x
= −3x2 − 2x− 1,

∂f

∂y
= 2y.
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Let P = (1, 2) ∈ C. We
have ∂f

∂x (P ) = −6, ∂f
∂y (P )4.

This implies that over R (and
similarly over C) the function
(x, y) 7→ f(x, y) is approxi-
mated well by the linear func-
tion (x, y) 7→ −6x+4y−2, and
the zero set V (f) is approxi-
mated, “in a small neighbor-
hood of P” by the zero set of
the above linear function, i.e.,
by the line V (−6x + 4y − 2)
(drawn in red).

x

y

Example 1.19.

Consider C = V (f) ⊂ A2(k)
with
f = y2 − x(x+ 1)(x− 1).

x

y

Example 1.20.
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Consider C = V (f) ⊂ A2(k)
with
f = y2 − (x+ 3)(x2 + 1).

x

y

Example 1.21. Consider C = V (f) ⊂ A2(k) with

f = y2 − x2(x+ 1).

In this case,
∂f

∂x
= −3x2 − 2x,

∂f

∂y
= 2y

and in particular
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0.

This corresponds to the fact
that there is no well-defined
tangent line to V (f) at the
point (0, 0).

x

y

Example 1.22.

Consider C = V (f) ⊂ A2(k)
with

f = y2 − x3.
In this case once again both
partial derivatives of f vanish
at (0, 0). x

y
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(1.8) Singular and nonsingular points.

From the examples and the situation over the real and complex numbers,
we would like to make the following definition, as one example that we can
use some geometric insight, while formally “only manipulating algebraic
expressions” (in this case, taking derivatives of polynomials).

Definition* 1.23. Let k be a field and let f ∈ k[X,Y ] be a non-constant
polynomial. We say that a point P = (x0, y0) ∈ V (f) is smooth (or non-
singular), if

(
∂f
∂X (P ), ∂f∂X (P )

)
6= (0, 0), and in this case call the line

V

(
∂f

∂X
(P ) · (X − x0) +

∂f

∂X
(P ) · (Y − y0)

)
the tangent line to V (f) at P . Otherwise we call P a singular point of V (f).

Remark 1.24. This definition does not really make sense! (that’s
why I put a *) – more precisely, the property of being a smooth point
depends on the polynomial f , not just on the subset V (f) ⊂ k2. For example,
V (X) = V (X2), and using the partial derivatives of f = X, all points are
smooth, but using f = X2 instead, all points are singular. This illustrates
that the set V (f) (even if we equip it with the induced topology for the
embedding into k2 with the Zariski topology) alone does not carry enough
“structure” in order to really do geometry.

For now we will therefore view this as a “definition we would like to make
for V (f), but can currently only make after fixing f”. A little later in the
course we will be in a position to fix this problem.
If k is algebraically closed, then there is another option to proceed. (The

fact that this is option is not viable for general fields is the reason that
“classical” algebraic geometry, e.g., as in [GW1] Chapter 1 or [Ha] Chapter I,
is done over an algebraically closed base field.)
To formulate this, recall that a ring R is called reduced, if it has no non-zero

nilpotent elements, i.e., whenever xn = 0 for some x ∈ R, n ≥ 1, we must
have x = 0. For a polynomial f ∈ k[x, y], the quotient is reduced if and only
if there does not exist an irreducible polynomial g ∈ k[x, y] such that g2 | f .
In other words, in the decomposition of f into irreducible polynomials in the
unique factorization domain k[x, y] each irreducible factor occurs only once.
If f ∈ k[x, y] is a non-constant polynomial and f = f i11 · · · · f irr is a

decomposition of f with fi irreducible and pairwise distinct, then clearly
V (f) = V (f1 · · · · · fr), i.e., changing the exponents does not change the
vanishing set. It is therefore clear that every V (f) can also be written as the
vanishing set of a polynomial for which k[x, y]/(f) is reduced.
Over an algebraically closed field, we have the following strong converse:

Given V ⊂ k2 that has the form “vanishing set of one non-constant polyno-
mial”, there is a unique (up to multiplication by scalars in k×) polynomial
f ∈ k[x, y] such that V = V (f) and such that the ring k[x, y]/(f) is reduced
(i.e., it has no non-trivial nilpotent elements). When we use this f , we get
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the “right” notion of smooth points. (In fact, it is not difficult to show that
for f such that k[x, y]/(f) is not reduced, all points are non-smooth in the
sense of the above definition applied to f .)
In fact, there is the following more general version of this statement. For

an ideal a ⊂ k[T1, . . . , Tn] we denote by
√
a = {x ∈ k[T•]; xn ∈ a for some n ≥ 0}

its radical. (With notation as above,
√
(f) = (f1 · · · · · fr).) It is easy to see

that k[T1, . . . , Tn]/a is reduced if and only if a =
√
a, and that V (a) = V (

√
a).

Furthermore, we have:

Theorem 1.25. Let k be an algebraically closed field, and let a, b ⊆
k[T1, . . . , Tn] be ideals. Then

V (a) = V (b) ⇐⇒
√
a =
√
b.

This is (one version of) Hilbert’s Nullstellensatz. The implication ⇐ is
easy, as indicated above, and does not require the assumption that k is
algebraically closed. The other implication is non-trivial already in the case
that a = (1), so V (a) = ∅. In this case the statement is equivalent to saying
that any family f1, . . . , fr of polynomials that does not generate the unit
ideal has a common zero, whence the name Nullstellensatz (Nullstelle is
German for zero (of a polynomial)).
We will take up this discussion again, and in more detail, later.

Remark 1.26. Another perspective on the situation over the real numbers
(and similarly over the complex numbers) is the Theorem on inverse functions.
It implies, if P is a smooth point of V (f) in the sense of the above definition,
that locally (in the analytic, “usual”, topology) around P the set V (f) is
diffeomorphic to an open interval in R, i.e., there exists an open U ⊂ V (f),
P ∈ U , and an open interval V ⊂ R, and bijective differentiable functions
U → V and V → U that are inverse to each other.
More generally, there is a version for vanishing sets (or more generally,

level sets) of continuously differentiable maps Rn → R, and even more
generally for fibers of continuously differentiable maps f : Rn → Rm, x 7→
(f1(x), . . . , fm(x)), such that the Jacobi matrix (at some point P ),(

∂fj
∂xi

(P )

)
i,j

has rank m. Then locally around P , the fiber over f(P ) is a differentiable
manifold, i.e., is diffeomorphic to an open of Rn−m.
See Inverse function theorem (Wikipedia)1, in particular the section Giving

a manifold structure.

1 https://en.wikipedia.org/wiki/Inverse_function_theorem

https://en.wikipedia.org/wiki/Inverse_function_theorem
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For the projective plane, we make the following analogous definition (which
again depends on the polynomial F , not only on the vanishing set, cf. Re-
mark 1.24

Definition 1.27. Let k be a field and let F ∈ k[X,Y, Z] be a non-constant
homogeneous polynomial. We call a point P ∈ V+(F ) a smooth (or non-
singular) point of V+(F ), if(

∂F

∂X
(P ),

∂F

∂Y
(P ),

∂F

∂Z
(P )

)
6= (0, 0, 0),

and in this case call the line

V+

(
∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z

)
the tangent line to V+(F ) at P . Otherwise, we call P a singular point.

For the following remarks, the next lemma will be useful; we record it here
in the general case of n + 1 variables. Also note that for a homogeneous
polynomial of degree d, all partial derivatives are homogeneous of degree
d− 1.

Lemma 1.28. (Euler identity) Let F ∈ k[X0, . . . , Xn] be a homogeneous
polynomial of degree d. Then

∂F

∂X0
X0 + · · ·+

∂F

∂Xn
Xn = dF.

Proof. Since both sides are k-linear in F , it is enough to check this in case
F = Xν0

0 · · ·Xνn
n is a monomial. But then ∂F

∂Xi
Xi = νiF and the stated

identity follows immediately. �

Remark 1.29.
(1) Euler’s identity shows that the tangent line to a smooth point of V+(F )

contains the point P .
(2) The two definitions of smooth point are related as follows. Let F ∈

k[X,Y, Z] be a homogeneous polynomial, f = F (x, y, 1), so that V+(F )∩
ι(k2) may be identified with V (f) ⊂ k2. Cf. Section (1.6). We assume
that f is non-constant, and take P ∈ V (f), say P = (x0, y0), and
ι(P ) = (x0 : y0 : 1).
Then

(1.8.1) ∂F

∂X
(x, y, 1) =

∂f

∂x
,

∂F

∂Y
(x, y, 1) =

∂f

∂y
,

as is easily checked, and in particular
∂F

∂X
(x0, y0, 1) =

∂f

∂x
(P ),

∂F

∂Y
(x0, y0, 1) =

∂f

∂y
(P ).

This already shows that if P ∈ V (f) is smooth (with respect to the
polynomial f , that is), then ι(P ) is a smooth point of V+(F ) (i.e., for
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F ). To show the equivalence, assume that ι(P ) ∈ V+(F ) such that the
partial derivatives of F with respect to X and to Y both vanish. Then
Euler’s identity shows, since F (ι(P )) = 0, that the partial derivative
with respect to Z vanishes, as well, so ι(P ) is not smooth.
Finally, for a smooth point with tangent line V+(L) to V+(F ) at ι(P ),

L =
∂F

∂X
(P ) ·X +

∂F

∂Y
(P ) · Y +

∂F

∂Z
(P ) · Z,

equation (1.8.1) shows that V (L(x, y, 1)) is the tangent to V (f) at P . In
this sense, the two definitions are compatible.

(1.9) Smoothness for Cubic Curves.

Let us understand the notion of smoothness in the special case of cubic
curves (compare the earlier examples), more precisely for V (f) with f of the
form

f = y2 − (x3 + ax2 + bx+ c) = y2 − g(x).
As before, assume char(k) 6= 2.
Then

∂f

∂x
= −g′(x), ∂f

∂y
= 2y.

(This shows why the situation is different in characteristic 2, namely then
the partial derivative with respect to y vanishes for all points.)
The points (x0, y0) ∈ V (f) where both partial derivatives vanish satisfy

y0 = 0, g(x0) = g′(x0) = 0,

i.e. x0 is a multiple root of g.
Proposition 1.30. For f as above, V (f) is smooth if and only if g is
separable (i.e. g has no multiple roots in an algebraic closure k).

We may homogenize f to obtain
F (X,Y, Z) = Y 2Z −X3 − aX2Z − bXZ2 − cZ3.

homogeneous of degree 3. By Remark 1.29, P ∈ V (f) is smooth if and
only ι(P ) ∈ V+(F ) is smooth, where as usual ι denotes the embedding
k2 → P2(k). Let us check smoothness at those points of V+(F ) that lie on
the line at infinity, i.e., points of the form (x0 : y0 : 1) ∈ V+(F ). Then the
vanishing of F amounts to x0 = 0, and since this excludes the possibility of
y0 vanishing as well, and we can scale the homogeneous coordinates, we see
that V+(F ) ∩ V+(Z) consists of the one point (0 : 1 : 0).

At this point, the partial derivative ∂F
∂Z

= Y 2 − aX2 − 2bXZ − 3cZ2 does
not vanish, so it is a smooth point, independently of the choice of a, b, c.
Therefore, for this special form of f and F , V+(F ) is smooth if and only
V (f) is smooth, if and only if g is separable.
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(1.10) Elliptic Curves and the Group Law.
Oct. 28, 2025

Definition* 1.31. Let k be a field. An elliptic curve over k is given by a
homogeneous polynomial F of degree 3 such that the vanishing set V+(F ) is
smooth (“for F”, at all points of V+(F )(k), for an algebraic closure k of k),
together with a fixed point O ∈ E.

Typical examples are the curves defined by homogenizations of polynomials
of the form

y2 − g(x), g ∈ k[x] a separable polynomial of degree 3

that we have studied above. In this case, we can (and typically do) choose the
unique point (0 : 1 : 0) of V+(F ) on the line at infinity as the distinguished
point O.
These elliptic curves have an extremely surprising additional structure, as

shown by the next proposition. We will assume that k is algebraically closed,
so that we can use Bézout’s theorem; but see the following remark.

Proposition 1.32. Let k be algebraically closed. Let E = V+(F ) ⊂ P2(k)
be smooth with degF = 3, and let O ∈ E be a fixed point. For P,Q ∈ E, let
L ⊂ P2(k) be the line through P,Q (or, in case P = Q, the tangent to V+(F )
at P = Q).

Then, counting with multiplicities, the intersection E∩L has three elements,
among them P and Q; we express this, and give these points names, by
saying that “E ∩ L = {{P,Q,R}} as a multiset”. Let M be the line through
O and R (or, in case of equality, the tangent to V+(F ) at this point), write
E ∩M = {{O, R, S}} and define

P +Q = S.

Then (E,+) is a commutative group with neutral element O.

L

M

R

P

Q

P +Q

Proof. All properties except for associativity are easy to check. The neutral
element is the point O. For a point P , its negative −P is the third point in
the intersection of V+(F ) and the line through P and O. The associativity
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can, in principle, be checked by “direct computation” (write out equations
for all the lines involved in terms of coordinates of the points for which
one wants to check associativity), but this leads to long, complicated and
tedious calculations which are not at all enlightening. For a better, but still
elementary proof, see, e.g., [Kn] Section III.3 for a complete proof; cf. also
the discussion in [ST] 1.2.
(We will later, but rather next term than this term, be able to give a more

enlightening proof based on the Theorem of Riemann–Roch.) �

Remark 1.33. One can check that the proposition is still true without the
assumption that k be algebraically closed. In fact, for any field extension
k′/k, we obtain compatible group structures, i.e., V+(F )(k) ⊆ V+(F )(k′) is
a subgroup. The key reason is that whenever a cubic polynomial in one
variable over a field k has 2 zeros in k, then the third zero also lies in k
(always counting zeros with multiplicity). To prove the statement, one way
to proceed is to write down formulas for the coordinates of P +Q in terms
of the coordinates of P and of Q and see that whenever P , Q (and O) have
coordinates in k, then so does P +Q and −P . See [ST] 1.4 or [Kn] III.4.

Outlook: Advanced results and some open conjectures.
Oct. 29, 2025

(1.11) The Mordell Conjecture (Faltings’ Theorem).

From a number theoretic view, it is an interesting question to determine
the number of points of a vanishing set V+(F ) ⊂ P2(k) when k is a number
field, i.e., a finite extension of Q. For example, if F is linear, then V+(F )
evidently has infinitely many points (whenever k is any infinite field; for
a finite field of cardinality q, it has q + 1 points). For F homogeneous of
degree 2 the situation is still relatively easy to understand (but we skip this
here). However for F of degree ≥ 3, this is an extremely difficult question,
and although a lot of progress has been made over the last 50 years, there
are many questions that are still open. We first mention the Theorem of
Mordell and Weil that dates back even further and gives some important
information in the case of homogeneous cubic polynomials which define a
smooth curve, i.e., an elliptic curve.

Theorem 1.34. [Mordell–Weil, Mordell 1922 für K = Q; Weil 1928] Let
K/Q be a finite field extension and let E be an elliptic curve over K. Then
the abelian group E(K) is finitely generated.

Depending on the choice of polynomial F , the group might be finite or
infinite. By the general theory of finitely generated abelian group, we can find
a group isomorphism E(K) ∼= Zr × T for a finite group T and some natural
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number r ≥ 0, called the rank of E. Even in the case K = Q, there are many
open problems around the rank. For example, it is not known whether elliptic
curves over Q of arbitrarily high rank exist. At the time of writing, the best
result in this direction is by Elkies and Klagbrun who found (in 2024) an
elliptic curve of rank ≥ 29. The Conjecture of Birch and Swinnerton-Dyer
relates the rank of an elliptic curve to a natural number defined in analytic
terms (the vanishing order of a certain holomorphic function, the so-called
L-function of the elliptic curve).
For a proof of the theorem, see [ST] Chapter 3 (for K = Q), or [Si] Chapter

VIII.
For polynomials of higher degree Mordell conjectured that there are only

finitely many solutions with coordinates in a fixed number field. This
conjecture was proved in 1983 by Faltings, and he received the Fields medal
in 1986 in recognition for this proof. We state the result in a slightly more
general form (which you can ignore for now, and just read it in the case of
the specific example of vanishing sets V+(F ) in P2(k)).
Theorem 1.35. [Mordell Conjecture = Faltings’s Theorem] Let K/Q be a
finite field extension and C/K a smooth projective curve of genus g ≥ 2, e.g.,
C = V+(F ) ⊂ P2(k) with F homogeneous of degree ≥ 4 such that V+(F ) is
smooth.

Then C(K) is a finite set.

(1.12) Fermat’s Last Theorem and Modular Curves.

Theorem 1.36. [“Fermat’s last theorem”; Wiles] Let p > 2 be prime. Then
V+(X

p + Y p + Zp)(Q) = {(0 : 1 : −1), (1 : 0 : −1), (1 : −1 : 0)},
i.e. only the trivial (obvious) solutions exist.

It follows from Faltings’s Theorem that the set on the left hand side is
finite whenever p > 3, but that theorem does not give any information on
the cardinality of this finite set. Wiles’s contribution was the following more
specific result about elliptic curves over Q.
Theorem 1.37. [Taniyama–Shimura–Weil Conjecture; Wiles, 1995] Every
elliptic curve E/Q is modular.

Actually, Wiles (together with Taylor) proved a slightly weaker than the
theorem stated here; the proof was later completed by Breuil, Conrad,
Diamond and Taylor. Ribet, based on an idea of Frey2, had shown before
that this modularity conjecture implies Fermat’s Last Theorem. The key
idea of Frey was that assuming that ap + bp = cp for abc 6= 0, the elliptic
curve defined by the (homogenization of the) equation

y2 = x(x− ap)(y − bp)
2Gerhard Frey was a professor at the University of Duisburg-Essen from 1990 to 2009.
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has “strange” properties and is seemingly not modular; this was then shown
by Ribet.
Remark 1.38. We do not explain here what modular means. Roughly, it
asserts a strong relation between the elliptic curve and a certain “modular
form”.
For example, if E is given by y2 = x3 + Ax + B with A,B ∈ Z, then

modularity implies a precise regularity for the numbers of points
#{(x, y) ∈ F2

q | y2 = x3 +Ax+B},
for each prime power q.

(1.13) The abc Conjecture.

We finish this chapter by a brief discussion of another famous conjecture
which at first sight does not have much to do with algebraic geometry (but
in fact, it does: for instance, it is equivalent to a conjecture by Szpiro on
elliptic curves over Q; indeed, Masser and Oesterlé made their conjecture
after studying Szpiro’s conjecture and its consequences).
We define the radical of a positive integer n as

rad(n) :=
∏

p prime, p|n

p.

Conjecture 1.39. [abc conjecture, Masser–Oesterlé] For every ε > 0 there
are only finitely many coprime triples (a, b, c) of positive integers with a+b = c
and

c > rad(abc) 1+ε.

We also state the following stronger variant, an explicit form of the abc
conjecture. If a, b, c ∈ Z>0 are coprime with a+ b = c, then

c ≤ rad(abc)2.

Example 1.40. 3+125 = 128 = c, and c > 30 = rad(3 ·125 ·128) illustrates
the inequality.

Remark 1.41.
(1) It is, somewhat surprisingly, not difficult to prove an analogous statement,

where the ring Z of integers is replaced by the polynomial ring C[X]. See
the second problem sheet.

(2) The abc conjecture implies effective versions of the Mordell Conjec-
ture/Faltings’s Theorem.

Let us illustrate by showing that the above effective version of the abc
conjecture easily implies Fermat’s Last Theorem for exponents n ≥ 6.
In fact, suppose there exist n ∈ N and coprime positive integers x, y, z

with xn + yn = zn. Then
zn ≤ rad(xyz)2
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by the abc conjecture, but also
rad(xyz)2 ≤ (xyz)2 < z6.

Putting both inequalities together, we obtain n < 6. The cases n = 3, 4, 5 are
(relatively) easier and have long been known, so the (effective) abc-conjecture
implies Fermat’s Last Theorem.

(1.14) Problems with Our Approach So Far.

What we have discussed so far was intentionally introductory and not yet
systematic. Beyond that, the “theory” so far has some serious problems.
Some are easy to fix; others require more serious changes. Desiderata:

• The same vanishing set V (f) (or more generally, V (f1, . . . , fm)) can
be defined by several different polynomials, and the set alone does
not “contain enough information” (for example, in order to define
smoothness). We would like to equip it with more “geometric struc-
ture” which will allow us to not carry around a specific choice of
polynomial(s).
• Related to this: A definition of morphisms (and hence isomorphisms)
between vanishing sets V (f1, . . . , fm).
• A more systematic use of commutative algebra.
• A theory that works well over non-algebraically closed fields (and
even over arbitrary commutative rings).
• A more transparent geometric meaning of intersection multiplicities
iP (V+(F ), V+(G)) in Bézout’s theorem (see earlier sections).
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2. The prime spectrum of a ring

References: [GW1] (2.1)–(2.4) (or other books that cover scheme theory, e.g.,
[Mu] Ch. II §1; [Ha] II.2).

(2.1) Motivation: Hilbert’s Nullstellensatz.

One piece of motivation for the theory we are going to work out is Hilbert’s
Nullstellensatz. To start the discussion, we start with a simple observation. Nov. 4, 2025

Proposition 2.1. Let k be a field, (t1, . . . , tn) ∈ kn. Then

(T1 − t1, . . . , Tn − tn) ⊂ k[T1, . . . , Tn]

is a maximal ideal. This ideal is the kernel of the evaluation homomorphism

k[T1, . . . , Tn]→ k, Ti 7→ ti,

i.e., a polynomial f lies in the above ideal if and only if f(t1, . . . , tn) = 0.

Proof. All statements are easy to check. �

Theorem 2.2. Let k be a field, and m ⊂ k[T1, . . . , Tn] a maximal ideal.
Then the field extension k ⊂ k[T1, . . . , Tn]/m is finite.

Proof. See [GW1] Section (1.3), or [Mu] Ch. I §1, or [Alg2] 4.33 for proofs
based on Noether Normalization, or, for instance, [AM] Ch. 5, Ch. 7 for
(somewhat) different proofs. �

Corollary 2.3. Let k be an algebraically closed field. Then the maximal
ideals of the ring k[T1, . . . , Tn] are precisely the ideals of the form

(T1 − t1, . . . , Tn − tn), (t1, . . . , tn) ∈ kn,

and we obtain a bijection between kn and the set of maximal ideals of
k[T1, . . . , Tn].

Proof. Let m ⊂ k[T1, . . . , Tn] be a maximal ideal. By the theorem, the
inclusion k → k[T1, . . . , Tn]/m is a finite field extension, hence – since k
is algebraically closed by assumption – an isomorphism. We define ti as
the image of (the residue class of) Ti under its inverse. Then clearly (T1 −
t1, . . . , Tn− tn) ⊂ m, and since the left hand side is a maximal ideal, equality
follows. �

Under the bijection of the corollary (for k algebraically closed), a vanishing
set V (f1, . . . , fm) corresponds to the set of all maximal ideals that contain
f1, . . . , fm.

3 https://math.ug/a2-ss23/sec-nullstellensatz.html

https://math.ug/a2-ss23/sec-nullstellensatz.html
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(2.2) The spectrum of a ring.

Following Grothendieck, and in view of Hilbert’s Nullstellensatz, we start
a general theory of algebraic geometry by replacing polynomial rings over
(algebraically closed) fields by arbitrary ring, and defining for a ring R, its
prime spectrum

Spec(R) = {p ⊂ R prime ideal} .
(It is better to work with prime ideals than with maximal ideals. One reason
is that otherwise the following definition of the map between spectra induced
by a ring homomorphism would not work, since in general preimages of
maximal ideals under a ring homomorphism are not maximal ideals.)
For an element f ∈ R, we denote by f(p) the image of f under the ring

homomorphism
R −→ R/p −→ Frac(R/p).

In particular, we have f(p) = 0 if and only if f ∈ p. (Compare the situation
for polynomial rings over fields, and polynomials f .)

Proposition/Definition 2.4. [Zariski topology on Spec(R)] Let R be a
ring.
(1) For a subset M ⊆ R, we define the “vanishing set”

V (M) = {p ∈ Spec(R); M ⊆ p} .

If a is the ideal generated by M , then V (M) = V (a). For M ⊆M ′, we
have V (M ′) ⊆ V (M). For an element f ∈ R we also write V (f) for
V ({f}).

(2) We have V (0) = Spec(R), V (1) = ∅.
(3) For a family ai of ideals of R, we have⋂

i

V (ai) = V

(∑
i

ai

)
.

(4) For ideals a1, a2 ⊆ R we have

V (a1) ∪ V (a2) = V (a1 ∩ a2) = V (a1a2).

In particular, the subsets of Spec(R) of the form V (a) for ideals a ⊆ R form
the closed sets of a topology on Spec(R), the so-called Zariski topology.

Proof. Assertions (1), (2) and (3) are easy to check. For (4) note that

a1a2 ⊆ a1 ∩ a2 ∩ a1,

and likewise for a2, so that we have

V (a1) ∪ V (a2) ⊆ V (a1 ∩ a2) ⊆ V (a1a2).

Now let p ∈ V (a1a2) and assume that p 6∈ V (a1), say f ∈ a1 \ p. But then
for every g ∈ a2, we have fg ∈ a1a2 ⊆ p, and since p is a prime ideal and
f 6∈ p, we get g ∈ p. We have shown that a2 ⊆ p, i.e., that p ∈ V (a2). �
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With the notation introduced above, we can also write
V (M) = {p ∈ Spec(R); f(p) = 0 for all f ∈M} .

This in particular shows the analogy with the notation V (M) introduced
in Chapter 1. But note that this is only an analogy; we really redefine the
notation V (M) and from now on will use it only with the new meaning.
We have attached to every ring R a topological space Spec(R). We extend

this definition to a contravariant functor from the category of rings to the cat-
egory of topological spaces, as follows. (This means simply that to each ring
homomorphism ϕ : R→ S we attach a continuous map Spec(S)→ Spec(R)
(note that it goes “in the other direction”, whence the term contravariant),
and this is compatible with composition of homomorphisms, and for the
identity map an rings we get the identity map on topological spaces. For
more on categories, see, e.g., [Alg2] Section 3.14 or [GW1] Appendix A.)
Recall that the inverse image of a prime ideal under a ring homomorphism

is a prime ideal.
Definition 2.5. Let ϕ : R→ S be a ring homomorphism. We define a map

aϕ : Spec(S)→ Spec(R), q 7→ ϕ−1(q).

This map is also denoted by Spec(ϕ).

It is immediate that this construction is compatible with composition of
homomorphisms, and for the identity map an rings we get the identity map
on topological spaces. Continuity is also easy to check:
Lemma 2.6. Let ϕ : R→ S be a ring homomorphism. Then the map aϕ is
continuous. More precisely, for every ideal a ⊆ R, we have

(aϕ)−1(V (a)) = V (ϕ(a)).

Proof. The second statement implies that for every closed subset of Spec(R)
the inverse image under aϕ is again closed, and hence that the map aϕ is
continuous. To prove it, note that for q ∈ Spec(S) we have

q ∈ (aϕ)−1(V (a))⇐⇒ aϕ(q) ∈ V (a)⇐⇒ a ⊆ ϕ−1(q)

⇐⇒ ϕ(a) ⊆ q⇐⇒ q ∈ V (ϕ(a)).

�

Example 2.7.
(1) Spec(k) for k a field,
(2) Spec(Z),
(3) Spec(k × k) for k a field, Nov. 5, 2025
(4) for R a principal ideal domain, the prime ideals are (0) (with closure all

of Spec(R)) and the ideals (f) for f irreducible (the latter being maximal
ideals and hence corresponding to closed points). This applies in particu-
lar to Spec(k[T ]) for k a field. If k is assumed to be algebraically closed

4 https://math.ug/a2-ss23/subsec-kategorien.html

https://math.ug/a2-ss23/subsec-kategorien.html
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then the irreducible polynomials are precisely the linear polynomials and
Spec(k[T ]) = {(X − a); a ∈ k} ∪ {(0)}. For k = R, in addition to the
linear polynomials, there are irreducible polynomials of degree 2, as well,
namely all polynomials that decompose in C[T ] as (X − a)(X − a) for
some a ∈ C \ R. The map Spec(C[T ]) → Spec(R[T ]) corresponding to
the inclusion R[T ] ⊂ C[T ] maps (0) 7→ (0) and

(X − a) 7→ (X − a) (a ∈ R), (X − a) 7→ ((X − a)(X − a)) (a ∈ C \ R).

Proposition 2.8. Let R be a ring and a ⊆ R an ideal. Denote by π : R→ R/a
the canonical projection. Then the map aπ induces a homeomorphism (i.e.,
a bijective continuous map with continuous inverse map)

Spec(R/a)→ V (a).

Proof. Since (prime) ideals in the quotient correspond bijectively to (prime)
ideals in R which contain a, the map Spec(R/a)→ Spec(R) has image V (a)
and is injective. Since we know that it is continuous, it only remains to show
that the inverse map is continuous, as well. In other words, we need to check
that aπ maps closed sets to closed sets. But one checks easily that

aπ(V (b) = V (a) ∩ V (π−1(b))

which is closed in V (a), as desired. �

Note that it is easy (i.e., you should do it …) to construct examples of a
ring R and ideals a 6= b with V (a) = V (b). The following result clarifies the
situation. Recall the notion of radical of an ideal; for a ⊆ R its radical is

√
a = {f ∈ R; ∃n ≥ 1 : fn ∈ a} =

⋂
p∈V (a)

p,

an ideal containing a. For the second equality, see [Alg2] Satz 2.595. We call
an ideal a ⊆ R a radical ideal, if

√
a = a.

Proposition 2.9. Let R be a ring. For Y ⊆ Spec(R), write I(Y ) =
⋂

p∈Y p.
The maps a 7→ V (a) and Y 7→ I(Y ) satisfy

(1) V (I(Y )) = Y ,
(2) I(V (a)) =

√
a,

and in particular induce a bijection between the set of all radical ideals of R
and the set of all closed subsets of Spec(R).

Proof. It is clear that both V (−) and I(−) are inclusion reversing. Further-
more, I(Y ), being an intersection of radical ideals, is itself a radical ideal for
every Y . Since V (a) is closed for every a, the final statement follows from
(1) and (2).

Let us show that V (I(Y )) = Y for every subset Y ⊆ Spec(R). Clearly the
left hand side is closed and contains Y , so we have ⊇. To show ⊆ we need

5 https://math.ug/a2-ss23/sec-radikale.html#stz-beschr-rad-a

https://math.ug/a2-ss23/sec-radikale.html#stz-beschr-rad-a


ALGEBRAIC GEOMETRY 1, WS 25/26 25

to show that V (I(Y )) is the smallest closed subset containing Y , i.e., that
whenever Y ⊆ V (a), then V (I(Y )) ⊆ V (a). But if Y ⊆ V (a), then a ⊆ p for
all p ∈ Y , so a ⊆ I(Y ), and hence V (I(Y )) ⊂ V (a) as desired.
Now we show that I(V (a)) =

√
a for every ideal a ⊂ R. But the radical of

a can be described as √
a =

⋂
p∈Spec(R), a⊆p

p,

and this is precisely I(V (a)). �

In particular, for every p ∈ Spec(R),

{p} = V (p).

From this we see that a point p ∈ Spec(R) is closed (i.e., {p} is a closed
subset of Spec(R)) if and only if p is a maximal ideal.

Definition 2.10. Let R be a ring. For f ∈ R we define
D(f) = Spec(R) \ V (f)

and call the subsets of Spec(R) of this form principal open subsets.

With the notation introduced above we may write
D(f) = {p ∈ Spec(R); f(p) 6= 0} ,

and correspondingly we sometimes think of D(f) as the non-vanishing set
of f .

Proposition 2.11. Let R be a ring.
(1) The sets D(f) for f ∈ R form a basis of the topology of Spec(R), i.e.,

every open subset of Spec(R) can be written as a union of subsets of this
form.

(2) The family of sets D(f) is stable under taking finite intersections.

Proof. For (1) take U ⊆ Spec(R) open, say U = Spec(R)\V (a). Then V (a) =⋂
f∈a V (f), hence U =

⋃
f∈aD(f). For (2) note that D(f) ∩D(g) = D(fg)

and that the intersection with empty index set, Spec(R) equals D(f). �

Proposition 2.12. Let R be a ring and let f ∈ R. Denote by Rf the
localization of R with respect to f . Then the ring homomorphism τ : R→ Rf ,
x 7→ x

1 , induces a homeomorphism
Spec(Rf )→ D(f).

Proof. The set of prime ideals in a localization S−1R of R is in bijection
to the set of prime ideals p in R with p ∩ S = ∅, via P 7→ τ−1(P) and
p 7→ pS−1R =

{
a
s ; a ∈ p, s ∈ S

}
. This implies that the continuous map

Spec(Rf )→ Spec(R) restricts to a bijective (and, of course, still continuous)
map Spec(Rf )→ D(f). To check that it is a homeomorphism, we need to
check that open sets in Spec(Rf ) have opens in D(f) as their image. It is
enough to check this for principal open subsets D(g/f i), because those are
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a basis of the topology, and such a set has image D(fg) = D(f) ∩D(g) in
Spec(R), which is open in D(f). (Equivalently, one could check that closed
sets have closed image in D(f). This is also easy: for an ideal a ⊆ Rf , the
image of V (a) in Spec(R) is D(f) ∩ V (τ−1(a)) ∩ D(f) which is closed in
D(f).) �

Proposition 2.13. Let R be a ring and f ∈ R. Then D(f) (with the
induced topology) is quasi-compact6 (i.e., for every cover D(f) =

⋃
i∈I Ui by

open subsets there exists a finite subset I ′ ⊆ I with D(f) =
⋃
i∈I′ Ui). In

particular, Spec(R) = D(1) is quasi-compact.

Proof. Exercise (Problem Sheet 3). �

(2.3) Generic points.
Nov. 11, 2025

Recall from Problem Sheet 1 the notion of irreducible topological space. (A
topological space X is called irreducible, if X 6= ∅ and X cannot be written
as the union of two proper closed subsets, or equivalently, if X 6= ∅ and any
two non-empty open subsets of X have non-empty intersection.)
Clearly, if X is a topological space and x ∈ X, then the closure {x} is

irreducible (because any non-empty open of this set contains x). Topological
spaces that arise as spectra of ring have a sort of converse property:

Proposition 2.14. Let R be a ring, X = Spec(R), and Z ⊆ X a closed
subset.
(1) The set Z (with the induced topology) is irreducible if and only if I(Z) is

a prime ideal.
(2) If the closed subset Z is irreducible, then there exists a unique η ∈ Z

such that {η} = Z, and we call η the generic point of Z.

Proof. Let a = I(Z), so a ⊆ R is a radical ideal with Z = V (a). If a = p is a
prime ideal, then Z = V (p) = {p} as we have seen above, and in particular
Z is irreducible with generic point p. Since for prime ideals, V (p) = V (q) if
and only if p = q (because prime ideals are radical ideals) this argument also
shows the uniqueness statement of (2).
Thus it only remains to show that whenever Z is irreducible, then I(Z)

is prime. First note that Z 6= ∅ implies I(Z) 6= R. Now for f, g ∈ R with
fg ∈ I(Z), we have Z ⊆ V (fg) = V (f) ∪ V (g), and if Z is irreducible, it
follows that Z ⊆ V (f) or Z ⊆ V (g). Without loss of generality, we have
Z ⊆ V (f), say. But then f ∈

√
(f) = I(V (f)) ⊆ I(Z). �

6The terminology here follows the French/Bourbaki convention, which also became
the standard in algebraic geometry, that a compact space is quasi-compact in the sense
explained here and Hausdorff (which Spec(R) typically is not).
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More precisely, one can show that for any subset Y ⊆ Spec(R) (not
necessarily closed), Y is irreducible if and only if I(Y ) is a prime ideal. (But
Y need not contain a generic point!) This follows from the following lemma.

Lemma 2.15. Let X be a topological space, and Y ⊆ X a subset with
closure Y . Then Y is irreducible if and only if Y is irreducible.

Proof. Use that for any open U ⊆ X, we have Y ∩ U = ∅ if and only if
Y ∩ U = ∅. �
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3. Sheaves

References: [GW1] (2.5)–(2.8) or [Ha] II.1.

(3.1) The notion of sheaf.

We have attached to every ring R a topological space Spec(R), but this
topological space “retains very little information” about the ring R. For
example, for every field k we get the same topological space as its prime
spectrum. To achieve our goal of “making Spec(R) into a geometric object”,
we follow the slogan that the geometry of a “space” is determined by the
functions on the space, meaning that for each kind of geometry (topology,
differential geometry, complex geometry) there is a natural notion of function
(continuous, differentiable, holomorphic), and this is a characteristic feature
of the whole theory.
For us, the intuition is that elements of the ring R should be viewed as

functions on Spec(R), but since the elements of R are not “really” functions,
it is useful to introduce a more abstract framework that allows us to talk
about (and gain intuition from) the previously mentioned cases, but which
also applies to the prime spectra of rings.
As it turns out, the following properties are crucial for the “functions” we

want to consider. Let X be a topological space.
• A function might be defined on all of X, or on some smaller open
subset of X (the “domain of definition” of the function). We want to
allow the functions to have poles at some point of X and therefore
do not ask that the domain of definition is always equal to X.
• Functions should be determined by “local information” – since we
do not want to talk of the values of a function, we will instead talk
about restrictions of a function to open subsets within its “domain
of definition”, and require that it is determined by the restrictions
to open subsets that cover the domain of definition, and also that
functions can be defined by “gluing with respect to an open cover”
(see below).

(We are deliberately vague about the “target” of our “functions”. In differ-
ential geometry it would be R, in complex geometry it would be C, but in
algebraic geometry we do not really have functions and therefore do not
really have a target of functions at our disposal.)

Definition 3.1. Let X be a topological space. A presheaf F (of sets) on
X is given by the following data:
(a) for each open U ⊆ X, a set F (U),
(b) for each pair U ⊆ V ⊆ X of open subsets, a map (“restriction map”)

resVU : F (V )→ F (U),
such that resUU = idF (U) for every U and resWU = resVU ◦ resWV for all U ⊆
V ⊆W open.
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Definition 3.2. Let X be a topological space and F , G be presheaves on X.
A morphism ϕ : F → G of presheaves is a family of maps ϕU : F (U)→ G (U)
of maps, U ⊆ X open, such that for all pairs U ⊆ V ⊆ X of open subsets,
the diagram

F (V ) G (V )

F (U) G (U)

resVU

ϕV

resVU

ϕU

commutes.

Notation: We often write s|U for resVU (s) (s ∈ F (V )). The elements of
F (U) are also called sections of the presheaf on the open set U . One also
writes Γ(U,F ) instead of F (U).
While the notion of presheaf provides the basic framework to talk about

(generalizations of) functions on a topological space, it is much too general
and does not capture enough properties that (even generalized) “functions”
should have. It turns out that the crucial property is that functions should
be determined by their restrictions to an open cover, and that it should
be possible to “specify a function locally”, i.e., on an open cover, provided
that the obvious compatibility condition on intersections is satisfied. This
observation is turned into the definition of sheaf, as follows.

Definition 3.3. Let X be a topological space. A presheaf F (of sets) on X
is called a sheaf (of sets), if the following condition is satisfied. For every
open subset U ⊆ X and every cover U =

⋃
i∈I Ui by open subsets of X, the

diagram

F (U)
∏
i∈I F (Ui)

∏
(i,j)∈I×I F (Ui ∩ Uj)

s (s|Ui
)i

(si)i (si|Ui∩Uj
)i,j

(si)i (sj|Ui∩Uj
)i,j

ρ σ

σ′

σ

σ′

is exact, i.e., the map ρ is injective, and the image of ρ is the set of elements
(si)i∈I such that σ((si)i∈I) = σ′((si)i∈I).

For sheaves F , G on X, a morphism F → G of sheaves is a morphism
between the presheaves F and G .

Pedantic remark: It follows from the definition (applied to U = ∅, I = ∅)
that for every sheaf F , the set F (∅) has precisely one element. Nov. 12, 2025

Examples 3.4. Typical examples of sheaves (and one non-example) one
should have in mind are the following.
(1) Let X be a topological space and Y a set. Setting, for U ⊆ X open,

F (U) = Map(X,Y ) (the set of all maps U → Y ) defines a sheaf on X.
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(2) Let X and Y be topological spaces. Setting F (U) = Mapcont(X,Y ) (the
set of all continuous maps U → Y ) defines a sheaf on X.

(3) Let X ⊆ Rn open (or any differentiable manifold). Setting F (U) =
C∞(U), the set of infinitely often differentiable functions U → R, defines
a sheaf on X.

(4) Let X ⊆ Cn open (or any complex manifold). Setting F (U) = Hol(U),
the set of holomorphic functions U → C, defines a sheaf on X.

(5) Let X = R (with the analytic topology). Setting F (U) = {f : U →
R bounded} defines a presheaf on R which is not a sheaf. (Similarly:
bounded and continuous; or bounded and differentiable.)

Typically, the restriction maps resVU are neither injective nor surjective.
If the map is not surjective, we may think of it as saying that there are
“functions” (more precisely, sections of the sheaf) defined on U but which
do not extend (because they may “have poles” at points of V \ U) to the
larger set V . On the other hand, a “function” on V cannot usually be
expected to be determined by its values on a smaller open set U ; so in the
above examples (1), (2), (3) the restriction maps will be injective only in
trivial cases. However in complex analysis (Example (4) above) there is the
interesting result (the “identity theorem”) that the restriction map resVU is
injective whenever ∅ 6= U ⊆ V and V is connected.
It follows easily from the sheaf axioms that for U = U1 ∩ U2 with U1, U2

open and U1 ∩ U2 = ∅, the natural map F (U)→ F (U1)×F (U2) induced
by the restriction maps is an isomorphism.
Often the sets of sections carry more structure, for example, in the above

examples of sheaves of actual functions (with certain properties such as
continuity or differentiability) with target a ring, we can actually add and
multiply functions by using the addition and multiplication on the target,
so that the sets F (U) in this case naturally carry a ring structure and the
restriction maps are ring homomorphism. This is of course a useful piece of
information to remember, and we therefore make the following definition.

Definition 3.5. If X is a topological space and F a (pre-)sheaf on X, and
all F (U) are equipped with the structure of group / abelian group / ring /
module over a (fixed) ring R / …, and all restriction maps are homomorphisms
for the respective structure, then we speak of a (pre-)sheaf of groups / abelian
groups / rings / R-modules / ….

Often the following construction is useful.

Definition 3.6. [Restriction of (pre-)sheaf to open subset] Let F be a
presheaf on a topological space X, and let U ⊆ X be an open subset. Then
the restriction of F to U is the presheaf F|U on U given by F|U (V ) = F (V )
for all V ⊆ U open, and the same restriction maps as those for F . If F is
a sheaf, then so is F|U .
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Our next goal is to define a sheaf of rings on X = Spec(R) for a ring R.
This sheaf will be denoted OX and called the structure sheaf on Spec(R). The
underlying idea is the following. We said that we want to view elements of
R as (a kind of) functions on X, so we will start by setting OX(X) = R. For
a general open subset U ⊂ X it is however not so clear what to do. However,
for principal opens D(f) ⊆ X, there is a natural candidate. Namely, we have
seen that there is a natural homeomorphism Spec(Rf ) ∼= D(f), and since
we have already made a guess what the ring of functions on the left hand
side should be (namely Rf ), we will set OX(D(f)) = Rf . (We will check
later that this is well-defined, i.e., that whenever D(f) = D(g), we have a
canonical identification Rf = Rg.) At this point we can already (and will,
see below) check that this definition satisfies the conditions in the definition
of sheaves (i.e., the “gluing of sections”); the computation is not so difficult,
but this is a crucial point of the theory. Having checked this, philosophically,
we can expect that this should be enough information in order to define
OX , because the D(f) form a basis of the topology, and a sheaf should be
determined by local information. This is in fact a general result on sheaves,
and we will prove it below.

(3.2) Sheaves on a basis of the topology.

In this section we fix a topological space X and a basis B of the topology
of X (recall that this means that B is a set of open subsets of X such that
every open subset of B can be written as a union of elements of B). Things
simplify if B satisfies in addition the property that any finite intersections of
open subsets lying in B is again an element of B. This is satisfied for the
basis of principal open subsets of the Zariski topology of the spectrum of a
ring, the situation relevant for us, so the reader is advised to make this extra
assumption.

Definition 3.7.

(1) A presheaf F on the basis B of the topology is given by a set F (U)
for every U ∈ B and a restriction map resVU : F (V )→ F (U) for every
pair of open subsets U, V ∈ B with U ⊆ V , such that resUU = idF (U) for
every U ∈ B and resWU = resVU ◦ resWV for all open subsets U, V,W ∈ B,
U ⊆ V ⊆W .

(2) A presheaf F on B is called a sheaf on B, if for every U ∈ B, every
cover U =

⋃
i Ui with Ui ∈ B and every open cover Ui ∩ Uj =

⋃
k Uijk

with Uijk ∈ B, the sequence
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F (U)
∏
i∈I F (Ui)

∏
(i,j)∈I×I

∏
k F (Uijk)

s (s|Ui
)i

(si)i (si|Uijk
)i,j

(si)i (sj|Uijk
)i,j

ρ σ

σ′

σ

σ′

is exact.

Equivalently, in (2) it suffices to ask the exactness for every open cover
U =

⋃
i Ui, but to fix one open cover Ui ∩ Uj =

⋃
k Uijk for each pair i, j,

rather than check it for all such covers. In particular, if B is stable under
finite intersections, then one can just cover Ui ∩ Uj “by itself”, so that one
can use “the same sequence as in the definition of a sheaf”.

Definition 3.8. Let F , G be presheaves on B. A morphism f : F → G is
given by a collection of maps fU : F (U) → G (U) for all U ∈ B, such that
for all U ⊆ V , U, V ∈ B, we have resVU ◦fV = fU ◦ resVU (where on the left
we use the restriction map for G , on the left hand side that for F ).

For sheaves F , G a morphism F → G of sheaves on B is a morphism of
the underlying presheaves.

Together with the obvious identity morphisms and composition of mor-
phisms we obtain the categories of presheaves on B and of sheaves on B.
It is clear that we can restrict sheaves (and morphisms) on X to B.

Proposition 3.9. For every sheaf F on X (in the sense of Definition 3.3),
the restriction F|B given by F|B(U) = F (U) for all U ∈ B, and similarly
for the restriction maps, is a sheaf on B.

Similarly any morphism f : F → G of sheaves on X induces by restriction
a morphism f|B : F|B → G|B.

For sheaves, it is reasonable to expect that we can also go in the other
direction, i.e., recover a sheaf from its values (including the restriction maps)
on B, or more generally, given any sheaf F ′ on B construct a sheaf F
on X such that F|B is F ′. Furthermore this construction should also be
compatible with morphisms. (Of course, a similar result cannot hold true
for arbitrary presheaves.)Nov. 18, 2025
The restriction to B and extension to all open subsets of X are inverse to

each other – but only if this is formulated in the right way. It is impossible to
achieve that the extension of F|B is equal to F ; rather the best one can hope
for is that it is isomorphic to F , and that these isomorphisms are compatible
with morphisms of sheaves. This situation is best captured by the notion of
equivalence of categories, see the next section for a short discussion.

Proposition 3.10. The restriction functor F 7→ F|B from the category of
sheaves on X to the category of sheaves on B is an equivalence of categories.
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Sketch of proof. The key point is the construction of a sheaf F on X given
a sheaf F ′ on B. The idea of defining F (U) for an arbitrary open U ⊆ X is
easy to explain. Assume that we already had constructed the sheaf F . Then
for every cover U =

⋃
Ui with Ui ∈ B, we could recover F (U) from the sheaf

sequence as a subset of
∏
i F (Ui) =

∏
i F

′(Ui). If B is stable under finite
intersections, then the intersections Ui ∩Uj are also in B and we can directly
express the compatibility condition cutting our F (U) inside this products
in terms of F ′. In general, one can proceed similarly as in the definition of
the notion of sheaf on B.
In order to check that this construction has the correct properties, it is

however slightly inconvenient that it depends on the choice of a cover of U .
This problem may be circumvented by simply using the cover of U given by
all elements of B that are contained in U . This has the additional advantage
that all intersections arising in the definition of the sheaf axioms are covered
by open subsets that themselves occur in the cover, whence it is enough to
simply ask for the compatibility with all restrictions, in the following sense:
We define

F (U) =
{
(sV )V ∈

∏
V ∈B, V⊆U

F ′(V ); sV |W = sW for allW ⊆ V ⊆ U, V,W ∈ B
}
.

Similarly as in the first paragraph, the sheaf axioms imply that this is the
only possible candidate for F (U). It is then not difficult to define restriction
maps, to define the extension of morphisms of sheaves, and to show that this
extension functor is a quasi-inverse of the restriction functor. �

All of the above (definitions and) results carry over to the settings of
(pre-)sheaves of (abelian) groups, rings, modules over a fixed ring, etc.

(3.3) Categories and functors.

References: [GW1] Appendix A; [Alg2] Section 3.17.
A category C is given by a collection (“class”) of objects Ob(C), for any

two X,Y ∈ Ob(C) a collection HomC(X,Y ) of morphisms, for any object X
a morphism idX ∈ HomC(X,X), and for any three objects X,Y, Z a map

HomC(X,Y )×HomC(Y, Z) −→ HomC(X,Z), (f, g) 7→ f ◦ g,

such that f ◦ id = f , g ◦ id = g, (f ◦ g) ◦ h = f ◦ (g ◦ h) whenever these
expressions are defined. We write f : X → Y if f ∈ HomC(X,Y ), and
accordingly sometimes speak (and think) of morphisms in a category as
arrows. We sometimes write X ∈ C instead of X ∈ Ob(C). Set-theoretic
remark: We usually implicitly make the assumption that for all X, Y ,
HomC(X,Y ) is a set (i.e., that C is what is usually called a locally small
category).

7 https://math.ug/a2-ss23/subsec-kategorien.html

https://math.ug/a2-ss23/subsec-kategorien.html
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Examples. The categories of sets (with maps of sets as morphisms),
of finite sets, of groups (with group homomorphisms), of abelian groups,
of rings (with ting homomorphisms), of modules over a fixed ring (with
module homomorphisms), of finitely generated modules over a fixed ring, of
topological spaces (with continuous maps as morphisms).

Definition 3.11. Let C be a category. A morphism f : X → Y in C is
called an isomorphism, if there exists a morphism g : Y → X in C such that
g ◦ f = idX and f ◦ g = idY .

For objects X,Y in C we say that X and Y are isomorphic and write
X ∼= Y , if there exists an isomorphism X → Y in C.
Let C, D be categories. A functor F : C → D is given by the following

data: For each object X of C an object F (X) of D, and for every morphism
f : X → Y in C a morphism F (f) : F (X) → F (Y ), such that F (idX) =
idF (X) for all X and such that F (f ◦ g) = F (f) ◦ F (g).
It is useful to extend this notion in the following way. A contravariant

functor F from C to D is given by the following data: For each object X of
C an object F (X) of D, and for every morphism f : X → Y in C a morphism
F (f) : F (Y ) → F (X), such that F (idX) = idF (X) for all X and such that
F (f ◦ g) = F (g) ◦ F (f).
In order to distinguish between the two sorts of functors, the first variant

is called a covariant functor. A slightly different way to define (and denote)
contravariant functor is as follows. Given a category C, we define the opposite
(or dual) category Copp as follows. It has the same objects as C, and for any
two objects X,Y , we set

HomCopp(X,Y ) = HomC(Y,X),

i.e. “all arrows switch direction”. As identity morphisms we use the identity
morphisms in C. Composition in Copp is defined using the composition
in C in the obvious way. Then a contravariant functor from C to D is a
(covariant) functor Copp → D. In view of this definition, one usually denotes
contravariant functors in this way, i.e., as Copp → D.
If F is a functor and f is an isomorphism, then F (f) is an isomorphism.
The following properties of functors are often interesting, and we will need

them later on.

Definition 3.12. A functor F : C → D is called
(1) faithful, if for all objects X,Y ∈ C the map HomC(X,Y )→ HomD(F (X), F (Y ))

is injective,
(2) full, if for all objects X,Y ∈ C the map HomC(X,Y )→ HomD(F (X), F (Y ))

is surjective,
(3) fully faithful, if it is full and faithful, i.e., if for all objects X,Y ∈ C the

map HomC(X,Y )→ HomD(F (X), F (Y )) is bijective,
(4) essentially surjective, if for every object Z ∈ D, there exists an object

X ∈ C such that F (X) ∼= Z (NB: isomorphism, not necessarily equality!).
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For contravariant functors, there are analogous definitions.

Next we define morphisms of functors (also called natural transformations).

Definition 3.13. Let F,G : C → D be functors. A morphism Φ: F → G of
functors is given by a collection ΦX : F (X)→ G(X) of morphisms in D for
every X ∈ C, such that for every morphism f : X → Y in C, the diagram

F (X) G(X)

F (Y ) G(Y )

ΦX

F (f) G(f)

ΦY

commutes. (Applying the definition to functors Copp → D, one similarly
obtains the notion of morphism between two contravariant functors.)

With this notion of morphism, together with the obvious identity mor-
phisms and composition of morphisms of functors, the collection of all functors
between fixed categories C, D is itself a category, the functor category (how-
ever, the collection of all morphisms between two functors might not be a
set). In particular, we also obtain the notion of isomorphism between two
functors C → D. Nov. 19, 2025
Functors are the natural “morphisms” between categories. In fact, we

can define the category of all categories, where functors are the morphisms
(again the collections of morphisms in this category are not necessarily sets).
Note that we have obvious identity functors and can form the composition of
functors. (Since we also defined morphisms between functors, there is, so to
say, another level to the story in this case; this is formalized by the notion of
2-category, but we will not have to go into this.) In particular, we obtain
the notion of isomorphism between categories. However, it turns out that
isomorphisms of categories are rather rare. A much more useful notion is
the following weaker one.

Proposition/Definition 3.14. A functor F : C → D is called an equiva-
lence of categories if the following equivalent properties are satisfied.
(i) The functor F has a quasi-inverse G (i.e., G is a functor D → C such

that G ◦ F ∼= idC, F ◦ G ∼= idD; it is crucial here that we only ask for
isomorphisms, not equality, of these functors!).

(ii) The functor F is fully faithful and essentially surjective.

Example 3.15. Some (sketchy) examples of functors and morphisms of
functors.
(1) Spec: (Rings)opp → (Top)
(2) forgetful functors
(3) Hom functors
(4) “adjointness tensor-Hom” as example of isomorphism of functors: for

every X, have Hom(Y ⊗X,Z) ∼= Hom(Y,Hom(X,Z)) functorially in Y
and Z.
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(5) dual vector space, morphism to double dual
(6) localization of a ring, base change (of modules or rings)
(7) GLn(−), det : GLn(−)→ GL1(−).

Example 3.16. Let X be a topological space, and define the category
Ouv(X) as follows. The objects of Ouv(X) are the open subsets of X. For
open subsets U, V ⊆ X, we set

HomOuv(X)(U, V ) =

{
{∗} if U ⊆ V,
∅ otherwise.

Here {∗} denotes a set with one element. There is then a unique way to
define identity morphisms and composition, and one obtains a category.
With this definition, a presheaf of sets on X is the same as a functor

Ouv(X)opp → (Sets). A morphism of presheaves is the same as a morphism
of the corresponding functors. With this interpretation we in particular obtain
a natural notion of presheaf on X with values in any category C (namely a
functor Ouv(X)opp → C) and of morphisms between such presheaves (namely
a morphism of the functors).

(3.4) The structure sheaf of the spectrum of a ring.

We can now define the structure sheaf on the spectrum of a ring. So fix a
ring R and let X = Spec(R). We want to define a (“natural”) sheaf of rings
on X. As we have seen above, it is enough to define a sheaf (of rings) on
the basis of the topology given by the principal opens, and we want to set
OX(D(f)) = Rf .
The first step now is to check that this is well-defined (note that we may

have D(f) = D(g) for f 6= g).

Lemma 3.17.
(1) For f, g ∈ R, we have D(f) ⊆ D(g) if and only if g

1 ∈ Rf is a unit, i.e.,
g
1 ∈ R

×
f . In this case, we obtain a commutative diagram

Rg Rf

R

of ring homomorphisms (where R→ Rf and R→ Rg are the natural
maps into the localizations).

(2) If f, g ∈ R satisfy D(f) = D(g), then there is a unique isomorphism
Rf ∼= Rg of R-algebras.

Proof. (1) We have

D(f) ⊆ D(g)⇔ V (g) ⊆ V (f)⇔
√
(f) ⊆

√
(g)⇔ f ∈

√
(g),
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and this condition is equivalent to g
1 ∈ R×

f . In fact, if fn = gh, then
g
1 ·

h
fn = 1 in Rf . Conversely, if g1 ·

h′

fn′ = 1 in Rf , then there is m such that
gh′fm = fn

′+m.
The existence of the R-algebra homomorphism Rg → Rf then follows from

properties of the localization of a ring (and in fact is also equivalent to the
condition that g maps to a unit in Rf ). Furthermore, this homomorphism is
the unique R-algebra homomorphism Rf → Rg.
(2) follows from (1). �

Using Part (2) of the lemma, we see that we can attach to each principal
open D(f) the ring Rf (well-defined up to unique isomorphism, so we can
identify the rings Rf , Rg for D(f) = D(g) in a specific way). Alternatively,
the lemma implies that we have a unique isomorphism

Rf ∼= S−1R for S = {g ∈ R; D(f) ⊆ D(g)} ,
of R-algebras, and the right hand side S−1R only depends on D(f), not on
f .

Definition 3.18. Let R be a ring, X = Spec(R), B the basis of the Zariski
topology on X given by all principal open subsets. We define a presheaf O ′

X
on B by setting

O ′
X(D(f)) = Rf

and as restriction maps O ′
X(D(g)) → O ′

X(D(f)) for D(f) ⊆ D(g) use the
unique R-algebra homomorphism Rg → Rf (cf. Lemma 3.17).

Nov. 25, 2025
Lemma 3.19. Let R be a ring, fi ∈ R, i ∈ I. Then

⋃
i∈I D(fi) = Spec(R)

if and only the elements fi generate the unit ideal.

Proof. The condition
⋃
i∈I D(fi) = Spec(R) is equivalent to saying that the

ideal (fi; i ∈ I) is not contained in any prime ideal, but then the quotient
R/(fi; i ∈ I) cannot have a maximal ideal, so is the zero ring. �

Note that the lemma proves that Spec(R) is quasi-compact. It also shows
that whenever f1, . . . , fr ∈ R generate the unit ideal, then for every N ≥ 1,
also fN1 , . . . , fNr generate the unit ideal.

Theorem 3.20. The presheaf O ′
X on B of Definition 3.18 is a sheaf.

We denote the sheaf on X that we obtain from O ′
X by Proposition 3.10 by

OX and call it the structure sheaf on X.

Proof. We need to show: For all f, fi ∈ R such that D(f) =
⋃
i∈I D(fi), the

sequence
0→ Rf

ρ−−→
∏
i

Rfi
σ−−→
∏
i,j

Rfifj ,

where the maps are ρ(s) =
(
s
1

)
i
(with the i-th entry in Rfi), and σ((si)i) =(

si
1 −

sj
1

)
i,j
, is exact.
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We first do the following reduction steps:
• Replacing R by Rf , we may assume that f = 1, and hence that
Rf = R.
• Since all principal open subsets are quasi-compact, we may assume
that the index set I of the open cover if finite. (This requires a small
“computation”.)

As the previous lemma shows, the assumption that
⋃
iD(fi) = Spec(R) is

equivalent to saying that the elements fi generate the unit ideal in R. This
implies that for every N , the powers fNi also generate the unit ideal. We
will refer to this property by (*).

Injectivity in the above sequence. Let s ∈ R such that the image of s in
each localization Rfi vanishes. Then for each i there exists Ni such that
fNis = 0. Since I is finite, we find N with the property that fNi s = 0 for all
i. Now use (*) to write 1 =

∑
i gif

N
i . We then see that

s =

(∑
i

gif
N
i

)
s = 0.

Exactness “in the middle”: Im(ρ) = Ker(σ). The inclusion ⊆ is clear (in
fact, it holds for any presheaf). So let (si)i ∈ Ker(σ). We write

si =
ai

fNi

(again we use that I is finite, so that we can find an N that works for all si).
The assumption that (si)i ∈ Ker(σ) means that all the differences si

1 −
sj
1 ∈

Rfifj vanish, so we find M ≥ 0 such that

(fifj)
M (fNj ai − fNi aj) = 0.

Now we use (*) to write 1 =
∑
gif

M+N
i (these are other gi’s than above).

Define a =
∑

j gjf
M
j aj . We will check that ρ(a) = (si)i. For this we need

to prove that a
1 −

ai
fNi

= 0 ∈ Rfi for all i. But from the definition of a it
follows that

afM+N
i =

∑
j

gjf
M
j ajf

M+N
i =

∑
j

gjf
M
i aif

M+N
j = aif

M
i ,

and that implies the result. �

(3.5) Stalks.

References: For foundational material on the notion of colimit, see [GW1]
Appendix A (and the problem sheets).
Let F be a presheaf on a topological space X, and let x. The “stalk” of

the sheaf is the collection of all sections defined on some (possibly very small)
open neighborhood of x, in the following precise sense.
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Definition 3.21. Let X be a topological space and let x ∈ X. For every
presheaf F on X we define the stalk of F at x as

Fx = colim
x∈U

F (U) =

(⊔
x∈U

F (U)

)
/ ∼,

where the colimit is taken over the restriction maps of F as transition
maps (i.e., the partially ordered index set is the set of all open subsets of X
containing x, ordered by V ≤ U :⇔ U ⊆ V ). We can construct the colimit
explicitly as written on the right hand side. The equivalence relation ∼ is
defined by setting, for s ∈ F (U), t ∈ F (V ),

s ∼ t ⇐⇒ there exists an open W ⊆ U∩V, x ∈W, such that s|W = t|W .

For presheaves with values in some category C (rather than sets), we
would take the colimit above in the category C (assuming that it exists).
However, the following argument shows that for the categories that we will
be concerned with in this class, this distinction is not important.
The index set of the colimit is filtered (for U , V open neighborhoods of

x, we have U ∩ V ⊆ U, V , so U, V ≤ U ∩ V , and U ∩ V is again an open
neighborhood of x). Therefore, if F is a presheaf of groups / abelian groups
/ rings, then the stalk of F at a point x in the category of sets (i.e., as
constructed above) has a natural structure of group / abelian group / ring,
etc., and this gives the colimit in the category of groups / etc. For every
open neighborhood U of x, we have a natural map F (U)→ Fx; if F is a
presheaf of groups (etc.), then this is a group homomorphism (etc.).
If F → G is a morphism of sheaves, for all open neighborhoods U ⊆ V of

x we have a commutative diagram
F (V ) G (V )

F (U) G (U)

Fx Gx.

Here the vertical maps are the restriction map and the natural maps to
the stalk.
These diagrams induce a morphism Fx → Gx between the stalks. This

shows that the construction of stalks is a functor from the category of
presheaves (of sets) to the category of sets. Likewise, we obtain functors
from the category of presheaves of abelian groups to the category of abelian
groups, and similarly for presheaves of groups, rings, etc.

Example 3.22. In the theory of holomorphic functions (complex analysis
in one or several variables), the stalk of the structure sheaf can be interpreted
in terms of convergent power series as follows. Let X = C (or more generally
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an open subset of Cn, n ≥ 1, or even more generally any complex manifold),
and define the “structure sheaf” OX by setting

OX(U) = {f : U → C holomorphic} .

Then the stalk OX,x can be identified with the ring of convergent power
series at x (i.e., power series in n variables that converge in some open
neighborhood of x). The identity theorem can be phrased as saying that for
every connected open neighborhood U of x, the natural map OX(U)→ OX,x

is injective.
Nov. 26, 2025

Remark 3.23. Recall that for the computation of the limit of a convergent
sequence of real numbers, we may pass to a subsequence, i.e., we may replace
the index set N of the limit by any infinite subset of N. Something similar
holds for colimits:
Let (I,≤) be a partially ordered set. We call a subset I ′ ⊆ I cofinal, if for

every i ∈ I there exists i′ ∈ I ′ with i ≤ i′. We equip I ′ with the induced
partial order. Then for every inductive system (Fi)i∈I , we have a natural
isomorphism

colim
i∈I′

Fi ∼= colim
i∈I

Fi.

Example 3.24. Let R be a ring, X = Spec(R). Let p ∈ Spec(R). Let us
compute the stalk of the structure sheaf OX at the point p. By the previous
remark, we may compute the stalk as

OX,p = colim
f∈R, p∈D(f)

OX(D(f)) = colim
f∈R, p∈D(f)

Rf .

The latter colimit is isomorphic to the localization Rp of R with respect to p
(i.e., the localization with respect to the open subset R\p). In fact, the univer-
sal property of the colimit gives us a ring homomorphism colim

f∈R, p∈D(f)
Rf → Rp

(here we use that p ∈ D(f) by definition is equivalent to f 6∈ p, and in this
case f

1 is a unit in Rp).
It is easy to see that this map is surjective. For the injectivity, we need

to show that for all s, f ∈ R, p ∈ D(f) and i ≥ 0, s
f i

= 0 in Rp implies that
s
f i

= 0 in some localization Rfg with p ∈ D(g). This also follows immediately
from properties of the localization.

The following propositions illustrate in which sense the stalks capture
“local information about a sheaf”.

Lemma 3.25. Let X be a topological space, F a sheaf on X, U ⊆ X an
open subset. Then the natural map

F (U)→
∏
x∈U

Fx

is injective.
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Proof. Let s ∈ F (U) be an element which maps to 0 in every stalk Fx,
x ∈ U . By definition of the stalk, thus for every x, there exists an open
neighborhood Vx ⊆ U of x such that sVx = 0 (in F (Vx)). But then clearly
all the Vx cover U , and the sheaf axioms imply that s = 0. �

Proposition 3.26. Let X be a topological space, and let F → G be a
morphism of sheaves on X.
(1) The following are equivalent:

(i) For every open U ⊆ X, the map F (U)→ G (U) is injective.
(ii) For every x ∈ X, the map Fx → Gx is injective.

(2) The following are equivalent:
(i) For every open U ⊆ X, the map F (U)→ G (U) is bijective.
(ii) The morphism F → G is an isomorphism.
(iii) For every x ∈ X, the map Fx → Gx is bijective.

Proof. (1) The implication (ii) ⇒ (i) follows from the previous lemma. For
the implication (i) ⇒ (ii), let x ∈ X, and s ∈ Fx mapping to 0 in Gx. Let
ṡ ∈ F (V ) be a representative of s, i.e., an element with image s, where V is
a suitable open neighborhood of x. The image of ṡ in G (V ) maps to 0 in
the stalk at x, hence its restriction to a suitable open neighborhood U of x
is 0 (in G (U)). But then the injectivity in (i) implies that ṡ|U = 0, and a
fortiori s = 0.
(2) See Problem sheet 6. �

Note that the analogous statement to (1) for surjective maps is not true!
(Cf. Problem sheet 7.) It turns out that the stalks provide the correct
perspective on these properties, and we make the following definition.

Definition 3.27. Let ϕ : F → G be a morphism of sheaves on a topological
space X. We call ϕ injective ( surjective, bijective, respectively), if for every
x ∈ X the map Fx → Gx induced by ϕ is injective ( surjective, bijective,
respectively).

Proposition 3.28. Let X be a topological space and let ϕ,ψ : F → G be
two morphisms between the sheaves F and G on X. The following are
equivalent:
(i) The morphisms ϕ, ψ are equal.
(ii) For every x ∈ X, the induced morphisms ϕx, ψx : Fx → Gx between the

stalks are equal.

Proof. It is clear that (i) implies (ii). The converse follows from Lemma 3.25
�

(3.6) Sheafification.

We now study a “natural way” of attaching to an arbitrary presheaf a sheaf Dec. 2, 2025
that is “as close as possible” to the given presheaf (in particular, both have
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the same stalk at each point of the underlying space). This sheaf will be
called the sheafification (German: Garbifizierung) of the given presheaf. We
will define it by a universal property, as follows:

Definition/Proposition 3.29. Let X be a topological space and let F be
a presheaf on X.
(1) A sheaf F̃ together with a morphism ιF : F → F̃ of presheaves is called

a sheafification of F , if for every morphism F → G from F to a sheaf
G , there exists a unique morphism F̃ → G such that the diagram

F G

F̃
commutes.

(2) A sheafification of the presheaf F exists. If F is a presheaf of groups,
abelian groups, rings, …, then so is the sheafification.

(3) The morphism F → F̃ induces an isomorphism on the stalks for each
x ∈ X.

(4) For every morphism F → G we obtain a morphism F̃ → G̃ , so that the
diagram

F G

F̃ G̃

commutes. Thus sheafification defines a functor from the category of
presheaves on X to the category of sheaves on X.

It follows immediately from the definition that the sheafification is uniquely
determined up to isomorphism, and that the sheafification of a sheaf F is
simply the identity morphism.

Proof. We need to prove the existence of the sheafification. We may construct
it explicitly as follows. For U ⊆ X open, we set

F̃ (U) =
{
(sx)x ∈

∏
x∈U

Fx;

for all x there ex. x ∈W ⊆ U open, t ∈ F (W ), s.t. for all w ∈W : sw = tw

}
.

(This is a natural candidate in view of Lemma 3.25.) The restriction maps
are defined as the obvious projection maps. One checks that this defines
a sheaf. From this points, the rest of the proof is not difficult, but doing
things in the right order saves some work. We have a morphism F → F̃ of
presheaves by defining

F (U)→ F̃ (U), s 7→ (sx)x,
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where sx denotes the image of s in the stalk Fx. At this point one checks
that this induces an isomorphism on all stalks (thus proving Part (3)); in
fact, the projections F̃ (U)→ Fx for x ∈ U induce a map F̃x → Fx and it
is not hard to check that this map is inverse to the map Fx → F̃x induced
by ιF .
For ϕ : F → G a morphism of presheaves we obtain a morphism F̃ → G̃

by setting
F̃ (U)→ G̃ (U), (sx)x 7→ (ϕx(sx))x.

By Part (3) and Proposition 3.28, this is the unique morphism which makes
the diagram in (4) commutative. Applying this in the special case where the
target G of the morphism F → G is a sheaf, shows the universal property,
because in that case G = G̃ (more precisely, the morphism G → G̃ is an
isomorphism, by Proposition 3.26 (alternatively, this follows directly from
our construction)). �

Example 3.30. (constant sheaf) Let X be a topological space, E a set (or
abelian group, …). We define the presheaf F by setting

F (U) = E, U ⊆ X open,
with the identity maps as restriction maps. The constant sheaf with value E
is defined as the sheafification of this presheaf. All its stalks are naturally
equal to E. (But in general, the sections on an open U of X may be different
from E.)

A typical use of the sheafification is to do certain constructions of sheaves
that can be naturally carried out for presheaves, but may not themselves
yield sheaves (even if one starts with sheaves, so to say), as in the following
example.

Example 3.31. Let f : F → G be a morphism of sheaves. The image
sheaf Im(f) is defined as the sheafification of the presheaf

U 7→ Im(F (U)→ G (U)).

(Note that this presheaf usually is not a sheaf!)
The image sheaf comes with a natural injective sheaf morphism Im(f)→ G .

This is an isomorphism if and only of f is surjective.

Remark 3.32. We can express the universal property of the sheafification
by saying that, for every presheaf F and sheaf G , there are bijections

Hom(F̃ ,G )
∼=−−−−→ Hom(F ,G )

(given by composition with the natural map F → F̃ ; these maps are
functorial in F and in G ). On the right, we “view G as a presheaf” (forgetting
that it is a sheaf), and have Hom in the category of presheaves. On the
left, we have Hom in the category of sheaves, because source and target are
sheaves. (Since morphisms of sheaves by definition are just morphisms of
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presheaves, this may sound overly pedantic, but at this point it is useful to
distinguish between the two categories.)
We can thus express this by saying that the sheafification functor is left

adjoint to the inclusion functor from the category of sheaves into the category
of presheaves.

(3.7) Direct and inverse image.

Let f : X → Y be a continuous map between topological spaces. We want toDec. 3, 2025
think about how we could “transport” sheaves from X to Y and vice versa.
Given a presheaf F on X, it is fairly straighforward to define its “pushfor-

ward” or “direct image” in Y .
Definition 3.33. Let f : X → Y be a continuous map and let F be a
presheaf on X. We define its direct image (or pushforward) f∗F by

(f∗F )(V ) = F (f−1(V )), V ⊆ Y open
with the restriction maps induced by the restriction maps of F .

It is easy to check that for a sheaf F , the direct image f∗F is again a
sheaf. While this construction is fairly simple, note that it is usually not
easy to express the stalks of f∗F in terms of the stalks of F .
If F → F ′ is a morphism of sheaves on X, then we obtain a morphism

f∗F → f∗F ′ in the obvious way. It is easy to check that f∗ defines a functor
from the category of sheaves on X to the category of sheaves on Y . Similarly
for sheaves of groups, abelian groups, rings, etc.
If f : X → Y , g : Y → Z are continuous maps, and F is a presheaf on X,

then (g ◦ f)∗F = g∗f∗F .
Going in the other direction is a little more cumbersome, but with the

sheafification we have all the necessary tools at our disposal. We will proceed
in two steps and first define a presheaf.
Definition 3.34. Let f : X → Y be a continuous map and let G be a
presheaf on Y . We define its inverse image presheaf f+G by

(f+G )(U) = colim
f(U)⊆V

G (V ),

where the colimit is taken along the restriction maps of G , and the restriction
maps are obtained from the restriction maps of G and the universal property
of the colimit.

Even if G is a sheaf, the presheaf f+G usually is not a sheaf, and we define
Definition 3.35. Let f : X → Y be a continuous map and let G be a
presheaf on Y . We define its inverse image sheaf (or pullback) f−1G to be
the sheafification of f+G .

The construction G 7→ f+G is functorial in G . Since sheafification is also
functorial in G , we see that the inverse image f−1 is a functor from the
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category of presheaves on Y to the category of sheaves on X. If G is a
presheaf of (abelian) groups, rings, etc., then so are f+G and f−1G .

Example 3.36. Let X be a topological space, F a presheaf on X, x ∈ X,
and i : {x} → X the inclusion map. Then i−1F is the sheaf on the one-point
set {x} with sections (on the whole space) Fx.

It is not difficult to compute the stalks of the inverse image presheaf:

Proposition 3.37. Let f : X → Y be a continuous map and let G be a
presheaf on Y . Let x ∈ X. There is a natural isomorphism

(f−1G )x ∼= Gf(x).

These isomorphisms are functorial in G .

Proof. We have

(f−1G )x = (f+G )x = colim
x∈U⊆X

colim
f(U)⊆V⊆Y

G (V ) = Gf(x).

For the final equality we use that f is continuous and that therefore every
open neighborhood V ⊆ Y of f(x) contains f(U) for some U (e.g., U =
f−1(V )). �

From the computation of the stalks, we obtain the compatibility with
composition of morphisms in the following sense.

Proposition 3.38. Let f : X → Y , g : Y → Z be continuous maps and let
H be a presheaf on Z. Then there is a natural isomorphism

(g ◦ f)−1H ∼= f−1(g−1H ).

These isomorphisms are functorial in H .

Proof. One first checks that (g ◦ f)+H ∼= f+(g+H ). Passing to the sheafifi-
cation, this implies that (g ◦ f)−1H ∼= f−1(g+H ). On the other hand, (the
proof of) Proposition 3.37 implies that f+(g+H ) ∼= f−1(g+H ), because
the natural morphism between these sheaves induces isomorphisms on all
stalks. �

Dec. 9, 2025

Example 3.39. If U ⊆ X is an open subset and j : U → X denotes the
inclusion, then j+F = F|U for every presheaf F on X. If F is a sheaf, then
so is F|U , hence j−1F = F|U . In general, j−1F is the sheafification of F|U .
In fact, when we compute f+F (W ), W ⊆ U open, according to the

definition in terms of a colimit, then the index set has a largest element
(smallest open subset with respect to inclusion), namely W itself, and the
colimit “collapses”, i.e., can naturally be identified with F (W ).

Finally we note the following useful relation between the functors f∗ and
f−1.
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Proposition 3.40. Let f : X → Y be a continuous map, and let F be a
sheaf on X, G a presheaf on Y . Then there is a natural isomorphism

HomSh(X)(f
−1G ,F )

∼=−−−−→ HomPreSh(Y )(G , f∗F ).

These isomorphisms are functorial in F and in G . In other words, f−1 a f∗
is a pair of adjoint functors.

In the situation of the proposition, of F is a sheaf of abelian groups and G
is a presheaf of abelian groups, then the Hom sets above are abelian groups
and the adjunction isomorphisms are group isomorphisms.

Proof. First note that since F is a sheaf, we may identifyHomSh(X)(f
−1G ,F )

with HomPreSh(X)(f
+G ,F ). It is then not difficult to explicitly construct

natural maps in both directions and to check that they are inverse to each
other and functorial. �

Example 3.41. Some more examples of adjoint functors:
(1) Tensor product and Hom functor. Let R be a ring, let N be a fixed

R-module. Let C = D = (R-Mod) be the category of R-modules. Then
we have isomorphisms

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P )),

i.e., the functor F (M) =M ⊗R N is left adjoint to the functor G(P ) =
HomR(N,P ).

(2) Forgetful functors. Let R be a ring, and let G : (R-Mod)→ (Sets) be the
forgetful functor. Then G has a right adjoint, given by sending each set
I to the free module

⊕
i∈I R. Similarly, a right adjoint of a forget functor

can be considered as a natural notion of free object in some category. For
the forget functor from R-algebras to sets, we get the polynomial ring
(in variables indexed by the set I).

(3) Sheafification (Remark 3.32).
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4. Schemes

(4.1) Ringed spaces, locally ringed spaces.

Recall that we have attached to every ring R the topological space X =
Spec(R) and the structure sheaf OX . From these data we can recover the
ring R as R = OX(X), so in some sense we have reached our goal to attach
to R a “geometric object” without losing any information. This leads to the
following definition.

Definition 4.1. A ringed space is a pair (X,OX) where X is a topological
space and OX is a sheaf of rings on X.

Often one writes X instead of (X,OX). The sheaf OX is usually called the
structure sheaf of X. As we will see soon, however, this is not yet the “good”
notion of geometric object that we should use in order to talk about spectra
of rings; the problem lies in the notion of morphism. In order to understand
this, we first define the natural notion of morphisms of ringed spaces. To
define a morphism (X,OX)→ (Y,OY ) of ringed spaces, it is natural to start
with a continuous map f : X → Y . But in addition, the structure sheaves
should also be related. For this, recall that we think of the ring OX(U)
as the ring of functions defined on U . Then it is natural to expect that
for every function defined on V ⊆ Y , by “composition with f” we obtain
a function on f−1(V ). We need to put this in quotes because there is no
reason why the elements of the ring OY (V ) should really be function on V , so
“composition” does not really make sense. However, we can still ask that the
morphism (X,OX)→ (Y,OY ) comes with maps OY (V )→ OX(f

−1(V )) for
every open V ⊆ Y . Clearly, these should be compatible with the restriction
maps of these sheaves. Putting everything together, we arrive at the following
definition.

Definition 4.2. A morphism f : (X,OX)→ (Y,OY ) of ringed spaces is a
pair (f, f [) where f : X → Y is a continuous map and f [ : OY → f∗OX is a
morphism of sheaves of rings.

There are obvious notions of identity morphisms and composition of
morphisms, and we obtain the category (RingedSpaces) of ringed spaces.

Dec. 10, 2025
By adjunction, the morphism f [ corresponds to a morphism f ] : f−1OY →

OX of sheaves of rings on X. In particular, for every x ∈ X, we obtain a ring
homomorphism f ]x : OY,f(x) = (f−1OY )x → OX,x between the stalks. One
checks that this ring homomorphism may also be constructed explicitly by
using the universal property of the colimit OY,f(x) for the maps OY (V )→
OX,x (for V ⊆ Y open, f(x) ∈ V ) obtained as the composition

OY (V )→ (f∗OX)(V ) = OX(f
−1(V ))→ OX,x



48 ULRICH GÖRTZ

where the first map is obtained from f [, and the final map is the natural
map into the stalk, using that f(x) ∈ V implies x ∈ f−1(V ).
With this definition of the category of ringed spaces, we obtain a functor

(Rings)opp −→ (RingedSpaces).

In fact, to every ring R we may attach its spectrum (Spec(R),OSpec(R))
with the structure sheaf. If ϕ : R → S is a ring homomorphism, we
have the continuous map aϕ : Spec(S) → Spec(R) between the spectra.
Furthermore, for every principal open D(s) ⊆ Spec(R), s ∈ R, we have
(aϕ)−1(D(s)) = D(ϕ(s)), and thus the natural homomorphism Rs → Sϕ(s) is
a ring homomorphism OSpec(R)(D(s))→ OSpec(S)((

aϕ)−1(D(s))). Since the
D(s) form a basis of the topology, these define the desired sheaf homomor-
phism OSpec(R) → aϕ∗OSpec(S). (Cf. Proposition 3.10.)
From now on we usually write Spec(R) for the ringed space (Spec(R),OSpec(R)).
However, it turns out that this functor is not fully faithful. Therefore,

passing from rings to ringed spaces remains problematic, because there are
morphisms between spectra as ringed spaces that we “do not want to allow”.
In fact, morphisms coming from ring homomorphisms have a special

property that we can see by inspecting the stalks.

Proposition 4.3.
(1) Let R be a ring, X = Spec(R) (as a ringed space). For every x ∈ X, the

stalk OX,x is isomorphic to the localization Rx of R with respect to the
prime ideal x. In particular, the stalk is a local ring (i.e., it has a unique
maximal ideal).

(2) Let ϕ : R→ S be a ring homomorphism, let X = Spec(S), Y = Spec(R)
and let f : X → Y be the morphism of ringed spaces attached to ϕ as
above. Then for every x ∈ X the ring homomorphism OY,f(x) → OX,x is
a local homomorphism of local rings, i.e., it maps the maximal ideal of
OY,f(x) into the maximal ideal of OX,x.

Proof. We have already seen the first point. For the second one, note that ϕ
induces a commutative diagram

OY (Y ) OX(X)

OY,f(x) OX,x

which we may rewrite as

R S

Rf(x) Sx.

ϕ
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This means that the homomorphism Rf(x) → Sx is simply the natural
homomorphism between localizations induced by ϕ, i.e., a

s 7→
ϕ(a)
ϕ(s) . In

particular, it maps the maximal ideal f(x)Rf(x) = ϕ−1(x)Rϕ−1(x) into the
maximal ideal xSx. �

Definition 4.4.
(1) A locally ringed space is a ringed space (X,OX) such that for every

x ∈ X the stalk OX,x is a local ring (also called the local ring of X).
(2) Let X, Y be locally ringed spaces. A morphism X → Y of locally

ringed spaces is a morphism X → Y of ringed spaces such that for every
x ∈ X the induced ring homomorphism f ]x : OY,f(x) → OX,x is a local
homomorphism.

The above discussion shows that Spec actually is a contravariant functor
from the category of rings to the category of locally ringed spaces.

Theorem 4.5. The contravariant functor R 7→ (Spec(R),OSpec(R)) from the
category of rings to the category of locally ringed spaces is fully faithful.

Proof. Let R, S be rings and let X = Spec(S), Y = Spec(R) (considered as
locally ringed spaces). We have natural maps

Spec: Hom(R,S)→ Hom(X,Y ), Γ: Hom(X,Y )→ Hom(R,S),

and we want to show that they are inverse to each other. It follows directly
from the construction of Spec(ϕ) that ϕ 7→ Spec(ϕ) 7→ Γ(Spec(ϕ)) is the
identity morphism.
Now consider the composition f 7→ Γ(f) 7→ Spec(Γ(f)). We write f =

(f, f [) and Spec(Γ(f)) = (g, g[). For every x ∈ X, we have the commutative
diagram

OY (Y ) (f∗OX)(Y ) = OX(X)

OY,f(x) OX,x.

In terms of the rings R, S this diagram may be written as

R S

Rf(x) Sx.

Γ(f)

Now f is a morphism of locally ringed spaces, so the ring homomorphism
in the lower row of this diagram is local. This implies that the preimage
of the maximal ideal of Sx is the maximal ideal of Rf(x). It follows that
f(x) = Γ(f)−1(x). In other words, as continuous maps we have f = g. It
then follows from the above diagram that the sheaf morphisms f [ and g[
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induce the same maps between the stalks Rf(x) and Sx for all x. Therefore
they coincide by Proposition 3.28. �

(4.2) Schemes.

References: [GW1] Sections (2.9) – (2.12), Chapter 3; [Ha] Chapter II.2.Dec. 16, 2025
In view of the previous discussion, we arrive at the following definition.

Definition 4.6. An affine scheme is a locally ringed space that is isomorphic
to a locally ringed space of the form (Spec(R),OSpec(R)) for a ring R.

Rephrasing Theorem 4.5, we can say that the functor Spec is a contravari-
ant equivalence between the category of rings and the category of affine
schemes. Therefore, we have succeeded in attaching to each ring a “geomet-
ric object” (namely a locally ringed space), and this construction preserves
the information of the ring, and also of ring homomorphisms.
From this point, it is easy to extend the definition to include many more

geometric objects that are interesting from the point of algebraic geometry,
and accessible to the methods of commutative algebra. We start with the
following simple remark.
Remark 4.7. Let X = (X,OX) be a locally ringed space, and let U ⊆ X
be an open subset. Then (U,OX|U ) is a locally ringed space (which we often
just denote by U). The natural morphism U → X of locally ringed spaces is
called an open immersion.
As an example, let X = Spec(R) be an affine scheme, and let s ∈ R. Then

D(s) (in the sense of the above construction) is a locally ringed space, and
as a locally ringed space is isomorphic to Spec(Rs), i.e., it is again an affine
scheme.

We can now give Grothendieck’s definition of a scheme. (In the beginning,
what we call a scheme was called a prescheme (e.g. in the first edition of [Mu]
and in [Diedonné, Grothendieck: Éléments de Géométrie Algébrique]), but
the terminology has changed later.)
Definition 4.8. A scheme is a locally ringed space X such that there exists
an open cover X =

⋃
i Ui, such that for every i, (Ui,OX|Ui

) is an affine
scheme. A morphism of schemes is a morphism of the underlying locally
ringed spaces.

Proposition/Definition 4.9. Let X be a scheme, and let U ⊆ X be an
open subset, seen as a locally ringed space as above. Then U is a scheme.
We call U an open subscheme of X.

Proof. We need to show that we can cover U by affine schemes. To do so,
cover X =

⋃
i Ui by affine schemes. Then U ∩ Ui is open in Ui, and hence

can be covered by principal open subsets of Ui. But every principal open of
an affine scheme is itself an affine scheme, as remarked above. �
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Example 4.10.
(1) (affine space) Let R be a ring. Then we call AnR := Spec(R[T1, . . . , Tn])

affine space of relative dimension n over R. The inclusion R → R[T•]
gives us a morphism AnR → Spec(R) of affine schemes.

(2) Let k be a field. By 0 we denote the “origin” in Ank , i.e., the closed point
corresponding to the maximal ideal (T1, . . . , Tn).
For n ≥ 2, the open subscheme U = Ank \ {0} is not affine (cf. Problem

Sheet 9). In particular, open subschemes of affine schemes need not be
affine.

(3) (spectrum of a domain) Let R be a domain. Then η = (0) is the unique
minimal prime ideal, and hence the generic point of Spec(R). The stalk
OSpec(R),η is the field of fractions K := Frac(R). For every non-empty
open U ⊆ X := Spec(R), the natural map OX(U) → OSpec(R),η = K is
injective, thus all the rings OX(U) (U 6= ∅) and hence also all the stalks
OX,x may be considered as subrings of K in a natural way. Furthermore,
for every non-empty open U we have

OX(U) =
⋂
x∈U

OX,x

as subrings of K. Dec. 17, 2025
(4) (closed subschemes of affine schemes) Let R be a ring and a ⊆ R an ideal.

We have seen that the continuous map i : Spec(R/a)→ Spec(R) induced
by the canonical projection R→ R/a is a homeomorphism onto its image
V (a). From now on we write V (a) for the affine scheme obtained in
this way, i.e., the topological space is V (a), and the structure sheaf is
i∗OSpec(R/a). Then V (a) ∼= Spec(R/a) as schemes.

(5) Let k be a field. For every n ≥ 1, the scheme Spec(k[T ]/(Tn)) has the
form of the previous example. Each of these schemes topologically is
just one point, however, they are pairwise non-isomorphic. We think
of the scheme structure of Spec(k[T ]/(Tn)) for n > 1 as giving us an
“infinitesimal neighborhood” of this point, which is larger when n is large,
because the image of a polynomial in the ring k[T ]/(Tn) gives us not
only the information about the value of the polynomial at T = 0, but
also the first, …, (n− 1)-th derivative of the polynomial at 0.

(6) (schematic intersection of closed subscheme of affine scheme) Let R be a
ring, a, b ⊆ R ideals. We define the schematic intersection

V (a) ∩ V (b) = V (a+ b)

as a “closed subscheme” of Spec(R) in the sense of Part (5). The scheme
structure allows us to see, in addition to the set (and topological space)
V (a) ∩ V (b), also the “type of intersection”. For instance, if k is an
algebraically closed field and R = k[X,Y ] the polynomial ring in two
variables, then for a = (Y ) and b = (Y − f(X)), f ∈ k[X], the scheme
V (a) ∩ V (b) sees the zeros of f with their multiplicities.
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However, there are also schemes (e.g., “projective space” as constructed
below) that are not isomorphic to an open subscheme of an affine scheme.
Understanding how to construct these is one of the main next steps.

(4.3) Morphisms into affine schemes.

Jan. 6, 2026
References: [GW1] Section (3.3).
We have shown that morphisms between affine schemes correspond to ring

homomorphisms between the rings of global sections of their structure sheaves.
This result generalizes as follows. Recall the notation Γ(U,F ) = F (U) (for
a presheaf F ).

Theorem 4.11. Let X be a locally ringed space, R a ring and Y = Spec(R).
The map
HomlocRS(X,Y ) −→ HomRing(R,Γ(X,OX)),

f 7→ (R = Γ(Y,OY )
f[(Y )−−−→ Γ(f−1(Y ), f∗OX) = Γ(X,OX)),

is a bijection.

Proof. It is not too hard to prove the theorem along the same lines as
Theorem 4.5 (see [GW1] Proposition 3.4).
We give a simpler proof in the case that X is a scheme in order to illustrate

the principle of gluing of morphisms. �

Proposition 4.12. (Gluing of morphisms) Let X, Y be schemes (or: topo-
logical spaces, (locally) ringed spaces), and let X =

⋃
i Ui be a cover by open

subsets. Let fi : Ui → Y be morphisms such that fi|Ui∩Uj
= fj|Ui∩Uj

for all i,
j. Then there exists a unique morphism f : X → Y such that f|Ui

= fi for
all i.

Proof. On sets, define f(x) = fi(x) where i is chosen such that x ∈ Ui.
This is independent of i and thus defines a map f : X → Y of sets such
that f|Ui

= fi for all i. Continuity can be checked locally on X, hence f is
continuous, because all the fi are.
It remains to define a sheaf homomorphism OY → f∗OX . For V ⊆ Y open,

combining the data of the fi gives us a homomorphism

Γ(V,OY ) −→
∏
i

Γ(f−1(V ) ∩ Ui,OX).

Applying the sheaf axioms for the sheaf OX and the cover f−1(V ) =⋃
i(f

−1(V )∩Ui) one checks that this homomorphism factors through Γ(f−1(V ),OX).
This defines the desired homomorphism OY → f∗OX . �

Proof of Theorem 4.11. Let X =
⋃
i Ui be a cover by affine open subschemes.

We also chose covers Ui ∩ Uj =
⋃
Uijk by affine open subschemes. Consider

the diagram
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Hom(X,Y )
∏
i
Hom(Ui, Y )

∏
i,j,k

Hom(Uijk, Y )

Hom(R,Γ(X,OX)
∏
i
Hom(R,Γ(Ui,OX)

∏
i,j,k

Hom(R,Γ(Uijk,OX))

where the vertical maps are as in the statement of the theorem, the top
horizontal morphisms are given by restriction of morphisms to open subspaces,
and the bottom horizontal row is given by restriction of sections (this is
basically Hom(R,−) of the “sheaf sequence” for OX).
The top row is exact by “gluing of morphisms”, the bottom row is exact

because OX is a sheaf and the Hom functor is left exact. By Theorem 4.5,
Hom(Ui, Y ) = Hom(R,Γ(Ui,OX)), the vertical morphisms in the middle
and on the right hand side are isomorphisms. It follows that the vertical
morphism on the left is an isomorphism as well. This is what we had to
show. �

Example 4.13.
(1) Let X be a scheme. There is a unique morphism X → Spec(Z) of

schemes.
(2) Let k be a field (or any ring), and let X be a scheme. A morphism

X → Spec(k) is the same as a k-algebra structure on Γ(X,OX) (which
is by definition a ring homomorphism k → Γ(X,OX)).

Often, a k-algebra structure (for some field or ring k) on a scheme X is
given (e.g., on Spec(k[T•]/a), one of our examples of interesting schemes),
and in this case, similarly as for k-algebras, it is usually useful to consider
only morphisms which are compatible with this structure. This leads to the
following notion of “relative schemes”, or “schemes over a fixed base scheme
S”.

Definition 4.14. Let S be a scheme. The category (Sch/S) of S-schemes
is defined as follows. The objects are morphisms X → S of schemes. The
morphisms between S-schemes X → S and Y → S are scheme morphisms
X → Y such that the triangle

X Y

S

is commutative. Composition of morphisms is the usual composition of
morphisms of schemes.

If f : X → S is an S-scheme, we call f its structure morphism. Usually
we omit it from the notation and simply speak of X as an S-scheme. The
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Hom-sets in the category of S-schemes are usually denoted as HomS(X,Y ).
If S = Spec(R) is affine, we also speak of R-schemes instead.
The scheme S is also called the base scheme.
By 4.13 (1), we have (Sch) = (Sch/S).

Remark 4.15. Let R be a ring. If X is an R-scheme, then the rings
Γ(U,OX) fur U ⊆ X open, and the local rings OX,x for x ∈ X as well as
their residue class fields κ(x) = OX,x/mx all are equipped with the structure
of an R-algebra, since the R-algebra Γ(X,OX) naturally maps to all of them,
and all the natural homomorphisms between these rings are homomorphisms
of R-algebras.

Jan. 7, 2026
Remark 4.16. Theorem 4.11 has the following variant for S-schemes. If
S = Spec(R) and X = Spec(A) are affine schemes, where A is an R-algebra,
so that X is an S-scheme, then for every S-scheme T the natural map

HomS(T,X) −→ HomR(A,Γ(T,OT ))

is bijective. Here on the left we have morphisms of S-schemes and on the
right we have homomorphisms of R-algebras.

(4.4) Morphisms from spectrum of a field into scheme X.

References: [GW1] Section (3.4).
Let X be a scheme. To study X, it is often essential to understand the

sets of morphisms Hom(T,X) for varying schemes T . Even though these
sets are often hard to understand, their importance justifies introducing a
shorter symbol for them.

Definition 4.17.
(1) Let X be a scheme. For every scheme T we write

X(T ) := Hom(T,X)

and call this the set of T -valued points of X.
(2) If X, T are S-schemes for some scheme S, then we usually (by abuse of

notation) write
X(T ) = HomS(T,X)

for the set of morphisms T → X of S-schemes and call this the set of
T -valued points of the S-scheme X. (If it is necessary to distinguish
between the two sets, we could also write XS(T ).)

(3) If T = Spec(R) is affine, we also write X(R) = X(Spec(R)) and speak
of R-valued points.

Example 4.18. Let R be a ring.
(1) For the affine space AnR over R we have

AnR(T ) = HomSpec(R)(T,AnR) = HomR(R[T1, . . . , Tn],Γ(T,OT )) = Γ(T,OT )
n.
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Note that here it is important that we take only morphisms of R-schemes
on the right (and correspondingly, of R-algebras on the left).

(2) More generally, if X = V (a) for an ideal a ⊆ R[T1, . . . , Tn], then for
every R-algebra A we can identify

X(A) = {(xi)i ∈ An; ∀f ∈ a : f(x1, . . . , xn) = 0} ,

where we again take morphisms of R-schemes on the left hand side. (And
similarly for X(T ) where T is any R-scheme, not necessarily affine.)

Remark 4.19. There is another, more formal but also very useful justification
why the T -valued points of a scheme are important. We will take this up
again later in more detail, and hence at this point give only a brief sketch.
The argument applies to any (locally small) category C (for us, it would

be the category of schemes, or the category of S-schemes for some scheme
S). To each object X of C we may attach the functor

hX : Copp → (Sets), X 7→ HomC(T,X),

(on morphisms, hX is given by composition).
In this way, we obtain a functor C → Fun(Copp, (Sets)) from C to the

category of (contravariant) functors from C to the category of sets (with
morphisms of functors as morphisms). The Yoneda lemma states that this
functor is fully faithful. In particular, given objects X,Y of C, we have
X ∼= Y , if and only if the functors hX and hY are isomorphic. (Proving this
result is not difficult, you should try it! Or see, e.g., [GW1] Section (4.2).)
Note however that it is (almost always) a very special property of a functor
Copp → (Sets) to be of the form hX for some X; for most functors this is not
true.
For schemes, with our terminology of T -valued points, this means that a

scheme X is determined by the collection of all of its T -valued points together
with the maps X(T )→ X(T ′) induced by scheme morphisms T → T ′.

While in general it is difficult to make the set X(T ) explicit, we can give
a useful description at least in the case where T is the spectrum of a field,
see Proposition 4.21 below. To prepare for this, we start with the following
remarks.
Let X be a scheme and let x ∈ X.

Definition 4.20. Let X be a scheme and let x ∈ X. We call the stalk OX,x

the local ring of X (or OX) at x and usually denote its (unique) maximal
ideal by mx. The quotient κ(x) := OX,x/mx is called the residue class field
of X at x.

By definition of the notion of morphism of scheme (i.e., of morphism
of locally ringed space), the residue class field behaves functorially in the
following sense. For a morphism f : X → Y of schemes and a point x ∈ X,
we have the ring homomorphism f ]x : OY,f(x) → OX,x, a local homomorphism
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between local rings. This induces a ring homomorphism κ(f(x)) → κ(x)

between the residue class fields, which in this section we will denote by f ]x.
If U ⊆ X is an affine open neighborhood of x (i.e., U ⊆ X is open and the

scheme U is affine), say U = Spec(A), then x corresponds to a prime ideal
px ⊂ A and we obtain a ring homomorphism

OX,x
∼= OU,x = Apx ←− A.

Passing to the spectra, we obtain a morphism
jx : Spec(OX,x)→ U → X,

where the morphism U → X is the inclusion of the open subscheme U . This
morphism is independent of the choice of U . (It is easy to see that the
morphism is not changed if U is replaced by a principal open subscheme of
U . From this, one may deduce the independence of U .) It maps the closed
point of Spec(OX,y) to x (because the inverse image of the maximal ideal of
Apx in A is px).
Furthermore, the projection OX,x → κ(x) induces a morphism Spec(κ(x))→

Spec(OX,x) and composing this with jx we obtain a morphism
ix : Spec(κ(x))→ X

which maps the unique point of Spec(κ(x)) to x.

Proposition 4.21. Let X be a scheme, and let K be a field. The maps
X(K) {(x, α); x ∈ X, α : κ(x)→ K}

f (Im(f), f ])

ix ◦ Spec(α) (x, α)

are inverse to each other and in particular are bijective.
Here by abuse of notation we denote by Im(f) the unique point in the

image of f .

Proof. It follows from the above discussion that the given maps are inverse
to each other. �

Similarly, if k is a field, we have the following version for k-schemes.

Proposition 4.22. Let k be a field, X a k-scheme, and let K be an extension
field of k (so that Spec(K) also is a k-scheme). The maps of Proposition 4.21
restrict to bijections

X(K) {(x, α); x ∈ X, α : κ(x)→ K k-homom.} .
Here X(K) denotes the set Homk(Spec(K), X) of K-valued points of X

as a k-scheme.
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5. Projective space

(5.1) Gluing of schemes.

References: [GW1] Section (3.5). Jan. 13, 2026

Definition 5.1. A gluing datum consists of
• a family (Ui)i∈I of schemes,
• for all i, j ∈ I, an open subscheme Uij ⊆ Ui,
• for all i, j ∈ I, an isomorphism ϕji : Uij → Uji,

such that
(a) for all i, Uii = Ui (and ϕii = idUi),
(b) for all i, j, k,

ϕij ◦ ϕjk = ϕik on Ukj ∩ Uki
(part of this condition is that ϕjk(Ukj ∩ Uki) ⊆ Uji).

Note that the “cocycle condition” (b) implies in particular that ϕii = idUi

(i.e., we could omit this condition from (a)), and that the isomorphisms ϕij
and ϕji are inverse to each other.

Proposition 5.2. Let ((Ui)i, (Uij)i,j , (ϕij)i,j) be a gluing datum. There exists
a scheme X together with open immersions ψi : Ui → X, i ∈ I, such that
X =

⋂
i ψ(Ui), and for all i, j, the restriction ψi|Uij

is an isomorphism Uij
∼=−→

ψi(Ui) ∩ ψj(Uj), and the composition ψ−1
i|Uij
◦ ψj|Uji

equals the isomorphism
ϕij.

The scheme X together with the ψi is uniquely determined up to unique
isomorphism.

If all the Ui, Ui,j are S-schemes and the ϕij are morphisms of S-schemes
for some scheme S, then X carries a (unique) S-scheme structure so that
all the ψi are morphisms of S-schemes.

Proof. Construct the topological space X as in Problem 28, and the structure
sheaf OX using Proposition 3.10, applied to the basis of the topology of X
consisting of all those open subsets that are contained in (at least) one of
the ψi(Ui). See [GW1] Proposition 3.10 for a few more details.
The uniqueness and the final statement follow from gluing of morphisms

(Proposition 4.12). �

Example 5.3.
(1) (Disjoint union) For any family (Ui)i∈I of schemes we may set Uij = ∅

for all i, j. This gives a gluing datum (with the uniquely determined
ϕij), and the scheme obtained by gluing is called the disjoint union of
the Ui, and denoted by

⊔
i∈I Ui.

(2) (Gluing of two schemes) Let U1, U2 be schemes, and let U12 ⊆ U1,
U21 ⊆ U2 be open subschemes with an isomorphism U12

∼= U21. There is
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a unique way to extend this to a gluing datum. The cocycle condition is
automatically satisfied.

(3) (Affine line with doubled origin) Let k be a field, U1 = A1
k, U2 = A1

k,
U12 = U1 \ {0}, U21 = U2 \ {0}, and U12

∼= U21 the identity. This
defines a gluing datum, and the resulting scheme is called the “affine line
with doubled origin”. One can show that this (somewhat “pathological”,
because we applied the gluing in a “stupid” way (in the above situation
the isomorphism ϕij extends to an isomorphism U1

∼= U2); more precisely,
it is a non-separated scheme, see below) scheme is not affine.

(4) (Projective line) Let k be a field, U1 = A1
k, U2 = A1

k, U12 = U1 \ {0},
U21 = U2 \ {0}, and U12

∼= U21 the morphism x 7→ x−1 (i.e., on affine
coordinate rings, it is given by k[T, T−1]→ k[T, T−1], T 7→ T−1). This
defines a gluing datum, and the resulting scheme is called the “projective
line over k”, cf. also the next section.

(5.2) Projective space.

References: [GW1] Sections (3.6), (3.7); for a slightly different approach see [Ha]
II.2 and/or [GW1] Chapter 13.

Let R be a ring. Consider the following gluing datum which mim-Jan. 14, 2026
icks the covering of Pn(k) (from the introduction) by the open subsets
{(x0 : · · · : xn); xi 6= 0}, i = 0, . . . , n. (Note that each of these has a natural
bijection with kn by (x0 : · · · : xn) 7→

(
x0
xi
, . . . , x̂ixi , . . . ,

xn
xi

)
.)

Let
• Ui = SpecR

[
X0
Xi
, . . . , X̂i

Xi
, . . . , Xn

Xi

]
(where we view all these rings as

subrings of R[X0, . . . , Xn, X
−1
0 , . . . , X−1

n ]),
• Uij = D

(
Xj

Xi

)
⊆ Ui,

• ϕij : Uji → Uij is the identity (note that the localizations Γ(Ui,OUi)Xj
Xi

and Γ(Uj ,OUj )Xi
Xj

are equal as subrings ofR[X0, . . . , Xn, X
−1
0 , . . . , X−1

n ]).

Because the maps ϕij are defined as the identity of subrings of the ring
R[X0, . . . , Xn, X

−1
0 , . . . , X−1

n ], it is immediate that the cocycle condition is
satisfied.
Note that for every i, the ring R

[
X0
Xi
, . . . , X̂i

Xi
, . . . , Xn

Xi

]
is isomorphic to a

polynomial ring over R in n variables, i.e., Ui ∼= AnR.

Definition 5.4. The R-scheme attached to this gluing datum by Proposi-
tion 5.2 is called projective space of relative dimension n over R and denoted
by PnR.

The open subschemes Ui ∼= AnR are also called the standard charts of PnR.
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Proposition 5.5. Let R be a ring, n ≥ 0. Then Γ(PnR,OPn
R
) = R.

Proof. See Problem sheet 11. �

Corollary 5.6. Let R be a ring, n ≥ 1. Then the scheme PnR is not affine.

Proof. Otherwise the structure morphism PnR → Spec(R) would be an iso-
morphism because of Proposition 5.5 and Theorem 4.5. But (the underlying
continuous map of) this morphism clearly is not injective (e.g., because even
the composition AnR → PnR → Spec(R) with one of the standard charts is not
injective). �

Proposition 5.7. Let R be a ring, and let R→ k be a ring homomorphism
to a field k. Then

PnR(k) = Pn(k),
where the left hand side is the set of k-valued points of the R-scheme PnR,
and the right hand side is the “classical” projective space over k as in the
introduction.

Proof. We have corresponding identifications for the standard charts, and
they are compatible with the gluing datum. �

Recall how we defined the Zariski topology on Pn(k) in the first chap-
ter, by defining closed subsets V+(I) for ideals I ⊂ k[X•] generated by
homogeneous polynomials. We can transfer this definition to the context of
schemes by once more using gluing of schemes. For a homogeneous polyno-
mial f(X0, . . . , Xn) we write Φi(f) = f

(
X0
Xi
, . . . , Xn

Xi

)
∈ R

[
X0
Xi
, . . . , Xn

Xi

]
⊆

R[X0, . . . , Xn, X
−1
0 , . . . , X−1

n ] for its dehomogenization with respect to Xi.
Let R be a ring and let I ⊆ R[X0, . . . , Xn] be a homogeneous ideal, i.e.,

an ideal generated by homogeneous polynomials. For each i, let Vi be the
closed subscheme of Ui = SpecR[X0

Xi
, . . . , Xn

Xi
] defined by the polynomials

Φi(f), where f ranges over all homogeneous polynomials in I, i.e.,

Vi = V (Φi(f); f ∈ I homogeneous).

We extend this to a gluing datum by setting

Vij = Vi ∩ Uij .

One checks that the isomorphisms ϕij : Uji → Uij above induce isomorphisms
ϕij : Vji → Vij . In this way we obtain a gluing datum.

Definition 5.8. The scheme attached to this gluing datum is denoted by
V+(I).

Topologically, V+(i) is a closed subset of PnR (since we can check this by
intersecting with each Ui). The k-valued points of V+(I) coincide with the
set V+(I) defined in the first chapter (as a subset of Pnk , cf. Proposition 5.7).
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Definition 5.9. For a homogeneous polynomial f ∈ R[X0, . . . , Xn] we write
D+(f) = PnR \ V+(f),

an open subscheme of PnR.

As a special case, D+(Xi) = Ui. For a homogeneous polynomial f we have
D+(f) ∩ Ui = D+(f) ∩D+(Xi) = D+(Xif),

and under the identification D+(Xi) = Ui, this set is identified with D(Φi(f))
(as follows from the definition and the construction of V+(f)).

It follows that the sets D+(f) for varying homogeneous f form a basis of
the topology of PnR.Jan. 20, 2026

Proposition 5.10. Let R be a ring, and let f1, . . . , fm ∈ R[X0, . . . , Xn] be
homogeneous polynomials of the same degree d. Let I be the homogeneous
ideal generated by the fj. Then there is a morphism of R-schemes

f : PnR \ V+(I) −→ PmR
which for any ring homomorphism R→ k to a field k induces on k-valued
points the map

Pn(k) \ V+(I) −→ Pm(k), (x0 : · · · : xn) 7→ (f0(x•) : · · · : fm(x•)).

Here in the description of the map on k-valued points we fix a representative
x• = (x0, . . . , xn) ∈ kn+1. Note that while the value fj(x0, . . . , xn) of an
individual fj is not well-defined, the points (f0(x•) : · · · : fm(x•)) is well-
defined, because of our assumption that all fj are homogeneous of the same
degree.

One can show moreover that the morphism f is uniquely characterized by
the behavior on k-valued points whenever R is a reduced ring (i.e., has no
non-trivial nilpotent elements).

Proof. We useR[X0, . . . , Xn] as “the polynomial ring of PnR”, andR[Y0, . . . , Ym]
as “the polynomial ring of PmR ”, in order to distinguish between the two sides.
So, for instance, D+(Xi) ⊂ PnR and D+(Yj) ⊂ PmR are the standard charts.
Now we first construct a morphism

D+(fj) −→ D+(Yj)

which on k-valued points induces the desired morphism.
To do so,

D+(fj) =
⋃
i

(D+(Xi) ∩D+(fj)) =
⋃
i

D+(Xifj).

(Using the same cover, one can show that D+(fj) is affine and compute its
coordinate ring, and use this to specify the morphism fj directly, but we
proceed slightly differently.)
We have D+(Xifj) = Spec(R

[
X0
Xi
, . . . , Xn

Xi
,
Xd

i
fj

]
), because fj

Xd
i

is the de-
homogenization of fj with respect to Xi (denoted by Φi(fj) above), and
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D+(Xifj) is the principal open inside D+(Xi) ∼= AnR defined by this ele-
ment. We then have a morphism D+(Xifj)→ D+(Yj) attached to the ring
homomorphism

R

[
X0

Xj
, . . . ,

Xm

Xj

]
→ R

[
X0

Xi
, . . . ,

Xn

Xi
,
Xd
i

fj

]
,

X`

Xj
7→ f`

fj
.

Note that
f`
fj

=
Xd
i

fj
· f`
Xd
i

is really an element of the left hand side.
It is then easy to check that these morphisms by gluing of morphisms give

rise to a morphism D+(fj)→ D+(Yj) with the desired behavior on k-valued
points.
Finally, one uses gluing of morphisms again, now applied to the composi-

tions D+(fj)→ D+(Yj) ⊂ PmR in order to obtain a morphism

PnR \ V+(I) =
⋃
j

D+(fj) −→ PmR .

�
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6. Fiber products of schemes

References: [GW1] Sections (4.4) – (4.8)

In this section we will discuss the notion of (fiber) product of schemes, which
turns out to be useful in many respects. One motivation is this: It is a
natural question whether we can define products in the setting of schemes,
or k-schemes, say, where k is a field. For example, the bijection

P1(k)× P1(k)→ V+(X0X3 −X1X2) ⊂ P3(k),

((x : y), (x′ : y′)) 7→ (xx′ : xy′ : yx′ : yy′),

leads us to expect that there is an isomorphism P1
k×P1

k → V+(X0X3−X1X2)
of k-schemes — only that the symbol P1

k×P1
k is undefined at this point! Note

that one has to be a bit careful here: It is not hard to check that the above
map is bijective, but it is not a homeomorphism if we equip P1(k)× P1(k)
with the product topology; rather, the suitable topology is a different one
(cf. also Problem 4).

(6.1) Fiber products in a category.

We take a categorical approach and define the product (and the more general
notion of fiber product) by a universal category as follows.

Definition 6.1. Let C be a category, and let f : X → S, g : Y → S be
morphisms in C. An object P of C together with morphisms p : P → X and
q : P → Y with f ◦ p = g ◦ q is called a fiber product of X and Y over S, if
the following universal property holds:

For every scheme T together with morphisms ϕ : T → X and ψ : T → Y
with f ◦ ϕ = g ◦ ψ there exists a unique morphism ξ : T → P such that the
following diagram commutes:

T

P X

Y S

ϕ

ψ

ξ

p

q f

g

In view of the universal property, a fiber product (i.e., the object P together
with the morphisms P → X, P → Y ) is uniquely determined up to unique
isomorphism, if it exists. We therefore speak of “the” fiber product of X
and Y over S and denote it by X ×S Y . The morphisms X ×S Y → X,
X ×S Y → Y are called the projections from the fiber product to its factors.
Terminology: Saying that the (commutative) diagram
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P X

Y S

is a fiber product diagram or is cartesian is equivalent to saying that P
together with the given morphisms to X and Y is a fiber product of X and
Y over S. One also speaks of a pullback diagram, or calls P the pullback of
X along Y → S (of of Y along X → S).

Remarks and Examples 6.2.
(1) Let C be the category of sets and let f : X → S, g : Y → S be maps of

sets. Then the fiber product X ×S Y exists and is given by (as always,
up to unique isomorphism)

X ×S Y = {(x, y) ∈ X × Y ; f(x) = g(y)} ,

where the maps X ×S Y → X and X ×S Y → Y are the restrictions of
the usual projections from the cartesian product X × Y to its factors.
As a subset of X × Y , we can rewrite this as

X ×S Y =
⊔
s∈S

f−1(s)× g−1(s).

This explains the terminology fiber product.
(2) Let C be the category of topological spaces and let f : X → S, g : Y → S

be continuous maps. Then the fiber product X ×S Y exists and is given
by (as always, up to unique isomorphism)

X ×S Y = {(x, y) ∈ X × Y ; f(x) = g(y)} ,

where the maps X×S Y → X and X×S Y → Y are the restrictions of the
usual projections from the cartesian product X × Y to its factors. The
topology is defined as the coarsest topology for which both projections
are continuous. Equivalently, if we equip the product X × Y with the
product topology, then X ×S Y carries the subspace topology. More
explicitly, the open subsets of X ×S Y are those that can be written as
unions of sets of the form U ×S V , where U ⊆ X and V ⊆ Y are open.

(3) If pt is a terminal object in C (i.e., every object of C admits a unique
morphism to pt), then the universal property of X ×pt Y (with respect
to the unique maps X → pt, Y → pt) is precisely the universal property
of the product of X and Y .
This applies, for example, the the category of sets (with pt a set with

one element), to the category of schemes (with terminal object Spec(Z))
and to the category of S-schemes (with terminal object S, or more
precisely idS : S → S).

(4) If C is the category of sets or the category of topological spaces, f : X → S
is a morphism and s ∈ S, then the inclusion {s} → S is a morphism and
there is a natural identification of X ×S {s} with the fiber f−1(s) (in
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the case of topological spaces, we equip the fiber f−1(s) ⊆ X with the
subspace topology.

Dually to the notion of fiber product we have the notion of algamated sum
or pushout. The corresponding commutative diagrams are called cocartesian.
An example is the tensor product of rings.

(6.2) Fiber products of schemes.
Jan. 21, 2026

Theorem 6.3. All fiber products in the category of schemes exist.
Moreover, for scheme morphisms X → S, Y → S, the fiber product X×S Y

also satisfies the universal property of the fiber product in the category of
locally ringed spaces.

With more work, one can show that also in the category of locally ringed
spaces all fiber products exist; we will not need to use this.

Proof. We first consider the case that X = Spec(A), Y = Spec(B) and
S = Spec(R) are all affine. In this case, we claim that the (affine) scheme
Spec(A ⊗R B) satisfies the universal property of the fiber product in the
category of locally ringed spaces. (Note that it follows formally from the
universal property of the tensor product (it is the pushout of A and B with
respect to the homomorphisms R→ A and R→ B) and the antiequivalence
of the categories of rings and of affine schemes, that Spec(A ⊗R B) is the
fiber product in the category of affine schemes.) This claim follows easily
from Theorem 4.11, in fact for every locally ringed space T we have

HomlocRS(T, Spec(A⊗R B))

= HomRing(A⊗R B,Γ(T,OT ))

= HomRing(A,Γ(T,OT ))×HomRing(R,Γ(T,OT ) HomRing(B,Γ(T,OT ))

= HomlocRS(T,X)×HomlocRS(T,S) HomlocRS(T, Y ).

The composition is the map ξ 7→ (p ◦ ξ, q ◦ ξ), and the statement that this
map is a bijection is precisely the universal property of the fiber product.
In the general case, the fiber product may be constructed by gluing of

schemes. We give a rough sketch and refer to [GW1] Theorem 4.18 and the
references given there for more details.
Choose affine open covers

S =
⋃
i

Wi, f−1(Wi) =
⋃
j

Uij , g−1(Wi) =
⋃
k

Vik.

Then one constructs a gluing datum for the family

Uij ×Wi Vik.
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For a pair of indices (i, j, k), (i′, j′, k′), one shows that, denoting by p1, p2
the projections from Uij ×Wi Vik to its two factors,

p−1
1 (Uij ∩ Ui′j′) ∩ p−1

2 (Vik ∩ Vi′k′)
is an open subscheme of Uij ×Wi Vik which satisfies the universal property of
the fiber product

(Uij ∩ Ui′j′)×Wi∩Wi′ (Vik ∩ Vi′k′).
This open subschemes will be, in the scheme obtained by gluing, the inter-
section of (the images of) Uij ×Wi Vik and Ui′j′ ×Wi′ Vi′k′ . The identification
morphisms are chosen as the unique isomorphisms obtained from the char-
acterization by the universal property of a fiber product. This also ensures
that the cocycle condition is satisfied. �

Notation: For schemes X, Y , S, and rings R, A, we sometimes write
X ⊗R A := X ×Spec(R) Spec(A), X ⊗S A := X ×S Spec(A) and X ×R Y :=
X ×Spec(R) Y (provided that we are given the scheme morphisms required to
define these fiber products).

Example 6.4. As the following example shows, the topological space of a
fiber product of schemes is different, in general, from the fiber product (in
the category of topological spaces) of the underlying spaces. Since
C⊗RC = R[X]/(X2+1)⊗RC ∼= C[X]/(X2+1) = C[X]/(X−i)(X+i) ∼= C×C,
where the final isomorphism uses the Chinese Remainder Theorem and the
natural isomorphisms C[X]/(X − a) ∼= C, a ∈ C, we have that

Spec(C)×Spec(R) Spec(C) ∼= Spec(C× C) = Spec(C) t Spec(C)
consists of two points (both are closed and have residue class field C; this
scheme is the disjoint union of two copies of Spec(C)).

Remarks 6.5.
(1) For any ring homomorphism R → R′, we have AnR ⊗R R′ = AnR′ . In

particular, for any ring R, we have AnR = AZ ⊗Z R. In view of this,
we define, for an arbitrary scheme S, AnS = AnZ ×Spec(Z) S. Via the
second projection, this is an S-scheme, called the affine space of relative
dimension n over S.

(6.3) Base change.

Let S′ → S be a morphism of schemes. We obtain a functor
(Sch/S) −→ (Sch/S′), X → X ×S S′,

where X ×S S′ is an S′-scheme via the second projection.
On morphisms, the functor is defined as follows. Given a morphism X → Y

of S-schemes, we need to define a morphism X ×S S′ → Y ×S S′. To do
so, by the universal property of Y ×S S′, it is enough to specify morphisms
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X ×S S′ → Y and X ×S S′ → S′ (compatible with the morphisms to S). For
the first one, we take the composition X ×S S′ → X → Y , for the second
one the projection to the second factor.

(6.4) Fibers of morphisms.

In view of Example 6.2 (4), we define fibers of morphisms of schemes as
follows:

Definition 6.6. Let f : X → S be a morphism of schemes, and let s ∈ S
(i.e., s is a point of the underlying topological space of S). Denote by
is : Spec(κ(s))→ S the canonical map (Section (4.4)). Then the scheme

f−1(s) := X ×S Spec(κ(s))

is called the (schematic) fiber of f over s.
Jan. 27, 2026

In the case of the schematic fiber, the fiber product behaves well regarding
the underlying topological space.

Proposition 6.7. Let f : X → S be a morphism of schemes, s ∈ S, and
let f−1(s) = X ⊗S κ(s) be the schematic fiber. Then the projection

f−1(s)→ X

on topological spaces is a homeomorphism onto the fiber of the underlying
continuous map f : X → S.

Proof. It is clear that we may assume that S is affine. Furthermore, covering
X by affine open subschemes, it is easy to reduce to the case that X is
affine. So assume S = Spec(R), X = Spec(A), and f corresponds to the
ring homomorphism ϕ : R→ A. Let p ⊂ R be the prime ideal corresponding
to s, and denote by κ(p) the residue class field of p. We may describe κ(p)
equivalently as Rp/pRp or as Frac(R/p).
Then the definition of the schematic fiber amounts to

f−1(s) = Spec(A⊗R κ(p)).
We may compute the tensor product as

A⊗R κ(p) = A⊗R S−1R⊗S−1R S
−1R/pS−1R = S−1A/pS−1A,

where S = R \ p. (In the term on the right, by abuse of notation we write
S instead of ϕ(S) and p instead of ϕ(p).) This gives us a bijection between
Spec(A⊗R κ(p)) and the set of prime ideals q in A which satisfy

ϕ(p) ⊆ q, ϕ(S) ∩ q = ∅,
or equivalently,

ϕ−1(q) = p.

This is the desired statement on sets. To finish the proof, one checks that the
resulting bijective map is a homeomorphism (similarly as in Proposition 2.8,
Proposition 2.13). �
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Remark 6.8. Let S be a scheme. Let X be an S-scheme (i.e., we are given
a scheme morphism f : X → S. With the construction of the schematic fiber,
the morphism f gives rise to a family (Xs)s∈S , where each Xs := X ⊗S κ(s)
is a scheme over a field (namely over the residue class field κ(s)), and hence
an object that is closer to classical algebraic geometry. Properties of the
morphism f may often be viewed as properties of this family.

7. Properties of schemes and of morphisms of schemes

We introduce some further notions, giving names to important properties
of schemes and scheme morphisms. One of the goals is to obtain a better
understanding of the connection between the theory of schemes and the more
classical point of view taken in the first chapter. Along the way, we will
illustrate how fiber products of schemes are useful to “translate” notions
from topology to scheme theory.

(7.1) Reduced, irreducible, integral schemes.

Recall the definition of a reduced ring:

Definition 7.1. Let R be a ring. An element x ∈ R is called nilpotent, if
there exists n ≥ 0 such that xn = 0. The ring R is called reduced, if it has
no nilpotent elements 6= 0.

Definition/Proposition 7.2. A scheme X is called reduced, if the
following equivalent conditions are satisfied:
(i) For every open U ⊆ X, the ring Γ(U,OX) is reduced.
(ii) For every affine open U ⊆ X, the ring Γ(U,OX) is reduced.
(iii) There exists an affine open cover X =

⋃
i Ui such that for every i the

ring Γ(Ui,OX) is reduced.
(iv) For every x ∈ X, the ring OX,x is reduced.

Proof. See Problem 33. �

Every domain is reduced, but not conversely. More precisely, a reduced ring
R is a domain if and only if it has a unique minimal prime ideal (necessarily
the zero ideal), if and only if Spec(R) is irreducible. This leads to the notion
of integral scheme, see below. Before we come to it, we discuss irreducibility
and generic points in the context of schemes; cf. Section (2.3).

Definition 7.3. A scheme X is called irreducible, if its underlying
topological space is irreducible (i.e., is 6= ∅ and cannot be written as a union
of two proper closed subsets).

From the corresponding result for affine schemes, we obtain the existence
and uniqueness of generic points.
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Proposition 7.4. Let X be a scheme, and let Z ⊆ X be an irreducible
closed subset of (the underlying topological space of) X. Then Z has a unique
generic point, i.e., there exists a unique η ∈ Z such that Z = {η}.

Definition/Proposition 7.5. A scheme X is called integral, if the
following equivalent conditions are satisfied:

(i) The scheme X is reduced and irreducible.
(ii) For every non-empty open U ⊆ X, the ring Γ(U,OX) is a domain.
(iii) For every non-empty affine open U ⊆ X, the ring Γ(U,OX) is a domain.

If X is an integral scheme, then all the local rings OX,x are domains (note
that the converse does not hold, though). Since X is irreducible, it has a
(unique) generic point η ∈ X. The local ring K(X) := OX,η is a domain with
only one prime ideal, and hence a field, called the field of rational functions
of X.

(7.2) Subschemes.

Recall that we have defined the notion of open subscheme: If X is a scheme
and U ⊆ X an open subset of (the topological space) X, restricting the
structure sheaf of X to U equips U with the structure of a scheme, and
schemes of this form are called open subschemes. The inclusion U → X
naturally is a scheme morphism. A scheme morphism j : U → X is called
an open immersion, if the continous map j is a homeomorphism onto an
open subset of X, and under this homeomorphism the structure sheaf of
U is identified with the restriction OX|j(U). Equivalently, j factors through
an isomorphism with an open subscheme of X and the natural inclusion of
that open subscheme into X. (The difference between open subschemes and
open immersions is similar to the difference (in the context of sets) between
subsets and injective maps.)
There is also a notion of closed subscheme which is, however, slightly more

involved. The main reason is that unlike open subschemes, closed subschemes
are not determined by the underlying closed subset of X.
For the definition, recall that a morphism of sheaves is called surjective,

if the induced maps on stalks are surjective at all points of the underlying
topological space. If f : F → G is a morphism of sheaves, we have the notion
of the image sheaf im(f) (the sheafification of the presheaf U 7→ im(F (U)→
G (U))), and f is surjective, if and only if im(f) = G . For a surjective
homomorphism f : F → G of rings, the kernel sheaf Ker(f) (defined by
U 7→ Ker(F (U) → G (U))) is an ideal sheaf in F (i.e., for every open U ,
the subset Ker(f)(U) ⊆ F (U) is an ideal), and there is an isomorphism
G ∼= F/Ker(f), where the quotient sheaf is defined as the sheafification of
the presheaf U 7→ F (U)/Ker(f)(U).
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Definition 7.6. Let X be a scheme. A closed subscheme of X is given by
a closed subset Z together with an ideal sheaf I ⊆ OX such that

Z = {x ∈ X; (OX/I )x 6= 0}
and such that (Z,OX/I ) is a scheme.

Note that Z is defined by I . One can show that for any ideal sheaf
I ⊆ OX the set supp(O/I ) := {x ∈ X; (OX/I )x 6= 0} (the support of
OX/I ) is closed in X. Thus a closed subscheme “is” really the same as
an ideal sheaf I such that (supp(O/I ),O/I ) is a scheme. (This latter
property is not automatic; there are ideal sheaves for which it is not satisfied.)
If Z ⊆ X is a closed subscheme with corresponding ideal sheaf I , we

have a natural scheme morphism Z → X which on topological spaces is the
inclusion map i and on sheaves is given by OX → OX/I = i∗OZ . Thus, if
Z is a closed subscheme, we can recover I from the structure sheaf of Z
and the natural inclusion i : Z → X as I = Ker(OX → i∗OZ).
Example 7.7.
(1) Let R be a ring, a ⊆ R an ideal. Then V (a) ⊆ Spec(R) is a closed

subscheme. We will prove below that all closed subschemes of an affine
scheme have this form.

(2) Let R be a ring, and let I ⊆ R[X0, . . . , Xn] be a homogeneous ideal.
Then V+(I) ⊆ PnR is a closed subscheme. (We have seen that V+(I)
topologically is a closed subset. The sheaf homomorphism OPn

R
→ OV+(I)

is surjective; this can be checked on the standard open charts, thus
reducing to the affine case.) One can show that every closed subscheme
of PnR has this form.

Definition 7.8. A morphism i : Z → X is called a closed immersion, if
the continuous map i is a homeomorphism onto a closed subset of X and
the sheaf homomorphism OX → i∗OZ is surjective. Equivalently, i factors
as an isomorphism from Z onto a closed subscheme of X and the natural
morphism from that closed subscheme to X.

Theorem 7.9. Let R be a ring, X = Spec(R), and let Z ⊆ X be a closed
subscheme. Then there exists a unique ideal a ⊆ R such that Z = V (a) (i.e.,
Z and V (a) are defined by the same ideal sheaf in OX).

The ideal a is given as
a = IZ := Ker(R = Γ(X,OX) −→ Γ(Z,OZ)).

In particular, every closed subscheme of an affine scheme is itself affine.

Proof. It is easy to check that IV (a) = a. Therefore it is enough to show that
for every closed subscheme Z, we have Z = V (IZ).
The ring homomorphism A → Γ(Z,OZ) factors through A/IZ , and we

want to show that the natural morphism Z → Spec(A/IZ) is an isomorphism.
Replacing A by A/I , we may assume that ϕ : A → Γ(Z,OZ) is injective
(and then want to show that Z ∼= Spec(A)).
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(I) Let us show that the map Z → Spec(A) is a homeomorphism. We know
already that it is injective and closed; it remains to show its surjectivity. We
will show that Z is not contained in a proper closed subset of Spec(A). Let
s ∈ A with Z ⊆ V (s); we will show that then necessarily s is nilpotent, i.e.,
V (s) = Spec(A).
In view of the injectivity of ϕ, it is enough to check that ϕ(s) is nilpotent.

Let Z =
⋃
i Vi be a finite affine open cover (Z is quasi-compact since it is

closed in the quasi-compact affine scheme Spec(A)). Then Γ(Z,OZ) injects
into the product

∏
i Γ(Vi,OZ), so it is enough to show that all restrictions s|Vi

are nilpotent. But Vi ⊆ Z ⊆ V (s) implies Vi = VVi(s|Vi), so s|Vi ∈ Γ(Vi,OZ)
is indeed nilpotent.
(II) To conclude the proof, we show that Z = Spec(R) = X as schemes,

i.e., the sheaf homomorphism OX → OZ is an isomorphism (we identify
Z = X as topological spaces in view of Step (I)). This sheaf homomorphism
is surjective by assumption, and it remains to show the injectivity. We check
this on the stalks.
So let p ⊂ R be a prime ideal (i.e., a point of X), and consider the ring

homomorphism Rp = OX,p → OZ,p. It is then enough to show that for all
g ∈ A with g

1 7→ 0 ∈ OZ,p we have g = 0.
So fix g with this property. Let V ⊆ Z be an affine open neighborhood

of p such that ϕ(g)|V = 0. Choose an affine open cover Z =
⋃n
i=1 Vi with

V1 = V .
Let s ∈ A with D(s) ⊆ V .
Claim. There exists N ≥ 0 such that ϕ(sNg) = 0 ∈ Γ(Z,OZ).
We can check this on each Vi separately. By assumption ϕ(g|V ) = 0;

it remains to handle the case i > 1. Since DVi(ϕ(s)|Vi) = D(s) ∩ Vi ⊆
V ∩ Vi, we have g|DVi

(ϕ(s)|Vi )
= 0, i.e., the image of ϕ(g) in the localization

Γ(Vi,OZ)ϕ(s)|Vi
is = 0. Thus (ϕ(s)|Vi)Niϕ(g)|Vi = 0 for some Ni.

The claim is proved. Since ϕ is injective, it follows that sNg = 0, so the
image of g in As is = 0. A fortiori, g maps to 0 in Ap. This is what remained
to show. �

Proposition 7.10. Let X be a scheme, and let Z ⊆ X be a closed subset of
the topological space X. Then there exists a unique reduced closed subscheme
of X with underlying topological space Z.

Proof. If X = Spec(R) is affine and Z = V (a) as a set, for an ideal a ⊆ R,
then the scheme V (

√
a) is the unique reduced closed subscheme of X with

underlying set Z (recall, cf. Proposition 2.9, that V (a) and V (b) have the
same underlying closed subset, if and only if the radicals of a and b are equal;
the quotient of a ring by an ideal is reduced if and only if the ideal is a
radical ideal).
In the general case, in view of the uniqueness statement, we may obtain

the desired closed subscheme by using gluing of schemes. �
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Combining the notions of open and closed subscheme, we obtain the
following notion. Recall that a subset of a topological space is called locally
closed, if it can be written as the intersection of an open and of a closed
subset.

Definition 7.11. Let X be a scheme. If Y is a closed subscheme of an
open subscheme of X, then Y is called a subscheme of X.

If Y ⊆ X is a subscheme, then the topological space of Y is a locally
closed subset of X. We have a natural scheme morphism Y → X (which
may be obtained as the composition Y → U → X with U ⊆ X open as in
the definition), and the sheaf homomorphism OX → i∗OY (where i : Y → X
is the inclusion) induces a surjection OX,i(y) → (i∗OY )i(y) for every y ∈ Y .
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