Algebraic Geometry I WS 2022/23 Prof. Dr. Ulrich Görtz Dr. Heer Zhao

Problem sheet 5

Due date: Nov. 15, 2022.

Problem 17

Let X be a topological space, and suppose that $X = \bigcup_{i=1}^{n} Z_i$, where the Z_i , $i = 1, \ldots, n$, are closed irreducible subsets of X such that $Z_i \notin Z_j$ for $i \neq j$. Prove that the Z_i are precisely the irreducible components of X.

Problem 18

Determine the irreducible components of

Spec k[X, Y, Z]/(XY, XZ)

(in the form $V(\mathfrak{a})$ for \mathfrak{a} an ideal of k[X, Y, Z]/(XY, YZ)).

Problem 19

- (1) Let $\psi: A \to B$ be an injective ring homomorphism between reduced rings. Show that every minimal prime ideal of A is in the image of ${}^{a}\psi$. Give an example where ${}^{a}\psi$ is not surjective.
- (2) Let $\varphi \colon A \to B$ be a ring homomorphism, and let $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ be the map attached to φ . Assume that f is bijective and that f reflects specialization, i.e., for $x, x' \in \operatorname{Spec} B$ we have $f(x') \in \overline{\{f(x)\}}$ if and only if $x' \in \overline{\{x\}}$. Show that f is a homeomorphism.

Hint. In (2), we need to show that f is closed. Let $\mathfrak{b} \subset B$ be a radical ideal. Apply (1) to the ring homomorphism $A/\varphi^{-1}(\mathfrak{b}) \to B/\mathfrak{b}$ induced by φ and then use that f reflects specialization to show that $f(V(\mathfrak{b})) = V(\varphi^{-1}(\mathfrak{b}))$.

Problem 20

Give an example of a continuous map $f: X \to Y$ between topological spaces X and Y which is bijective and compatible with specialization (i.e., for $x, x' \in X$ we have $x' \in \overline{\{x\}}$, if and only if $f(x') \in \overline{\{f(x)\}}$) which is not a homeomorphism.