Problem sheet 12

Due date: Jan. 17, 2022.

Problem 45

Let k be an algebraically closed field of characteristic $\neq 2$. Let $f \in k\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous of degree $2, f \neq 0$. We call $V_{+}(f) \subseteq \mathbb{P}_{k}^{n}$ a quadric. Which of the following quadrics in \mathbb{P}_{k}^{2} are isomorphic as k-schemes?

$$
V_{+}\left(X_{0}^{2}+X_{1}^{2}\right), \quad V_{+}\left(X_{0}^{2}+X_{1}^{2}+X_{2}^{2}\right), \quad V_{+}\left(X_{0} X_{2}-X_{1}^{2}\right)
$$

Show that $V_{+}\left(X_{0} X_{2}-X_{1}^{2}\right) \cong \mathbb{P}_{k}^{1}$.

Problem 46

Let $f: X \rightarrow Y$ be a morphism of schemes. Let $Y=\bigcup_{i} V_{i}$ be a cover by affine open subschemes such that for all $i, f^{-1}\left(V_{i}\right)$ is quasi-compact. Show that f is a quasi-compact morphism, i.e., $f^{-1}(V)$ is quasi-compact for every quasi-compact open $V \subseteq Y$.

Problem 47

Given an example of a field k and an irreducible homogeneous polynomial $f \in$ $k[X, Y, Z]$ such that $V_{+}(f)$ (a closed subscheme of \mathbb{P}_{k}^{2}) is not isomorphic to \mathbb{P}_{k}^{1} as a k-scheme.
Hint. One possible way is to think about singularities. Another possible way is to think about the number of k-rational points.

Problem 48

Let k be an algebraically closed field.
(1) Show that there exists a unique radical ideal $I \subseteq k\left[T_{0}, T_{1}, T_{2}\right]$ such that for $Z:=V(I) \subseteq \mathbb{A}_{k}^{3}$ we have

$$
Z(k)=\left\{\left(t, t^{2}, t^{3}\right) ; t \in k\right\} \subset k^{3}=\mathbb{A}_{k}^{3}(k) .
$$

Show that $Z \cong \mathbb{A}_{k}^{1}$.
(2) Compute the closure \bar{Z} of Z in \mathbb{P}_{k}^{3} (with respect to the embedding $\mathbb{A}_{k}^{3}=$ $D_{+}\left(X_{0}\right) \subseteq \mathbb{P}_{k}^{3}$, where we use $X_{0}, X_{1}, X_{2}, X_{3}$ as homogeneous coordinates on \mathbb{P}_{k}^{3}), and give a homogeneous ideal $J \subseteq k\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ such that $V_{+}(J)$ has underlying topological space \bar{Z}.

