Problem sheet 12

Due date: Jan. 17, 2022.

Problem 45

Let k be an algebraically closed field of characteristic $\neq 2$. Let $f \in k[X_0, \ldots, X_n]$ be homogeneous of degree 2, $f \neq 0$. We call $V_+(f) \subseteq \mathbb{P}^n_k$ a quadric. Which of the following quadrics in \mathbb{P}^2_k are isomorphic as k-schemes?

$$V_{+}(X_0^2 + X_1^2), \quad V_{+}(X_0^2 + X_1^2 + X_2^2), \quad V_{+}(X_0X_2 - X_1^2).$$

Show that $V_+(X_0X_2-X_1^2)\cong \mathbb{P}^1_k$.

Problem 46

Let $f: X \to Y$ be a morphism of schemes. Let $Y = \bigcup_i V_i$ be a cover by affine open subschemes such that for all i, $f^{-1}(V_i)$ is quasi-compact. Show that f is a quasi-compact morphism, i.e., $f^{-1}(V)$ is quasi-compact for every quasi-compact open $V \subseteq Y$.

Problem 47

Given an example of a field k and an irreducible homogeneous polynomial $f \in k[X,Y,Z]$ such that $V_+(f)$ (a closed subscheme of \mathbb{P}^2_k) is not isomorphic to \mathbb{P}^1_k as a k-scheme.

Hint. One possible way is to think about singularities. Another possible way is to think about the number of k-rational points.

Problem 48

Let k be an algebraically closed field.

(1) Show that there exists a unique radical ideal $I \subseteq k[T_0, T_1, T_2]$ such that for $Z := V(I) \subseteq \mathbb{A}^3_k$ we have

$$Z(k) = \{(t, t^2, t^3); t \in k\} \subset k^3 = \mathbb{A}^3_k(k).$$

Show that $Z \cong \mathbb{A}^1_k$.

(2) Compute the closure \overline{Z} of Z in \mathbb{P}^3_k (with respect to the embedding $\mathbb{A}^3_k = D_+(X_0) \subseteq \mathbb{P}^3_k$, where we use X_0, X_1, X_2, X_3 as homogeneous coordinates on \mathbb{P}^3_k), and give a homogeneous ideal $J \subseteq k[X_0, X_1, X_2, X_3]$ such that $V_+(J)$ has underlying topological space \overline{Z} .