Algebraic Geometry I WS 2022/23 Prof. Dr. Ulrich Görtz Dr. Heer Zhao

Problem sheet 11

Due date: Jan. 10, 2023.

Problem 41

Let k be a field. Let X be the scheme obtained by gluing two copies of $\mathbb{A}^1_k = \operatorname{Spec} k[T]$ along the open subset U = D(T), with respect to the identity map $U \to U$ ("the affine line with the origin doubled"). Prove that X is not an affine scheme.

Problem 42

Let k be an algebraically closed field. Give an example of a morphism of schemes $\mathbb{A}_k^2 \to \mathbb{P}_k^1$ which is surjective (i.e., the underlying map on topological spaces is surjective).

Hint. First look for a map $\mathbb{A}_k^2(k) = k^2 \to \mathbb{P}^1(k)$ which is "defined by polynomials", i.e., of the form $(x, y) \mapsto (f(x, y) \colon g(x, y))$ for polynomials $f, g \in k[X, Y]$, and which is surjective.

Problem 43

Let R be a ring, $n \ge 1$. Let $B = R[X_0, \ldots, X_n]$. Let $Z = V(X_0, \ldots, X_n) \subseteq \mathbb{A}_R^{n+1} =$ Spec B, and let $U = \mathbb{A}_R^{n+1} \smallsetminus Z$, an open subscheme of \mathbb{A}_R^{n+1} .

Show that there is a "natural" morphism $p: U \to \mathbb{P}^n_R$ of *R*-schemes such that for every field *k* the induced map $U(k) \to \mathbb{P}^n_R(k)$ is given by $(x_0, \ldots, x_n) \mapsto (x_0: \cdots: x_n)$.

Hint. Let $\mathbb{P}_R^n = \bigcup_{i=0}^n U_i$ be the standard affine cover. Define morphisms $D(X_i) \to U_i$ and construct p by gluing of morphisms, applied to the compositions $D(X_i) \to U_i \to \mathbb{P}_R^n$.

Problem 44

We continue to work in the setting of Problem 43. Let $A = (a_{ij})_{i,j} \in GL_{n+1}(R)$ be an invertible $(n+1) \times (n+1)$ -matrix with entries in R.

(1) The ring isomorphism

$$B \to B, \quad X_i \mapsto \sum_j a_{ij} X_j,$$

induces an isomorphism $\mathbb{A}_R^{n+1} \to \mathbb{A}_R^{n+1}$ of *R*-schemes. Show that *A* restricts to an automorphism f_A of *U*. (2) Show that there exists a unique automorphism f_A of \mathbb{P}^n_R which fits into a commutative diagram

$$U \xrightarrow{f_A} U \\ \downarrow \qquad \downarrow \\ \mathbb{P}^n_R \xrightarrow{f_A} \mathbb{P}^n_R.$$

In this way we obtain a group homomorphism from $GL_{n+1}(R)$ into the group $\operatorname{Aut}_R(\mathbb{P}^n_R)$ of automorphisms of the *R*-scheme \mathbb{P}^n_R .

(3) Now let k be a field, n = 1. Let $\mathbb{P}_k^1 = U_0 \cup U_1$ be the standard affine open cover. We have $\mathbb{P}^1(k) = U_0(k) \cup \{(0:1)\} = k \cup \{\infty\}$. Let $x, y, z \in \mathbb{P}^1(k)$ be distinct points. Show that there exists a unique automorphism f of \mathbb{P}_k^1 such that f is of the form f_A and such that

$$f(0) = x$$
, $f(1) = y$, $f(\infty) = z$.