Problem sheet 11

Due date: Jan. 10, 2023.

Problem 41

Let k be a field. Let X be the scheme obtained by gluing two copies of $\mathbb{A}_{k}^{1}=\operatorname{Spec} k[T]$ along the open subset $U=D(T)$, with respect to the identity map $U \rightarrow U$ ("the affine line with the origin doubled"). Prove that X is not an affine scheme.

Problem 42

Let k be an algebraically closed field. Give an example of a morphism of schemes $\mathbb{A}_{k}^{2} \rightarrow \mathbb{P}_{k}^{1}$ which is surjective (i.e., the underlying map on topological spaces is surjective).

Hint. First look for a map $\mathbb{A}_{k}^{2}(k)=k^{2} \rightarrow \mathbb{P}^{1}(k)$ which is "defined by polynomials", i.e., of the form $(x, y) \mapsto(f(x, y): g(x, y))$ for polynomials $f, g \in k[X, Y]$, and which is surjective.

Problem 43

Let R be a ring, $n \geqslant 1$. Let $B=R\left[X_{0}, \ldots, X_{n}\right]$. Let $Z=V\left(X_{0}, \ldots, X_{n}\right) \subseteq \mathbb{A}_{R}^{n+1}=$ Spec B, and let $U=\mathbb{A}_{R}^{n+1} \backslash Z$, an open subscheme of \mathbb{A}_{R}^{n+1}.
Show that there is a "natural" morphism $p: U \rightarrow \mathbb{P}_{R}^{n}$ of R-schemes such that for every field k the induced map $U(k) \rightarrow \mathbb{P}_{R}^{n}(k)$ is given by $\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(x_{0}: \cdots: x_{n}\right)$.

Hint. Let $\mathbb{P}_{R}^{n}=\bigcup_{i=0}^{n} U_{i}$ be the standard affine cover. Define morphisms $D\left(X_{i}\right) \rightarrow U_{i}$ and construct p by gluing of morphisms, applied to the compositions $D\left(X_{i}\right) \rightarrow U_{i} \rightarrow$ \mathbb{P}_{R}^{n}.

Problem 44

We continue to work in the setting of Problem 43. Let $A=\left(a_{i j}\right)_{i, j} \in G L_{n+1}(R)$ be an invertible $(n+1) \times(n+1)$-matrix with entries in R.
(1) The ring isomorphism

$$
B \rightarrow B, \quad X_{i} \mapsto \sum_{j} a_{i j} X_{j},
$$

induces an isomorphism $\mathbb{A}_{R}^{n+1} \rightarrow \mathbb{A}_{R}^{n+1}$ of R-schemes.
Show that A restricts to an automorphism f_{A} of U.
(2) Show that there exists a unique automorphism f_{A} of \mathbb{P}_{R}^{n} which fits into a commutative diagram

In this way we obtain a group homomorphism from $G L_{n+1}(R)$ into the group $\operatorname{Aut}_{R}\left(\mathbb{P}_{R}^{n}\right)$ of automorphisms of the R-scheme \mathbb{P}_{R}^{n}.
(3) Now let k be a field, $n=1$. Let $\mathbb{P}_{k}^{1}=U_{0} \cup U_{1}$ be the standard affine open cover. We have $\mathbb{P}^{1}(k)=U_{0}(k) \cup\{(0: 1)\}=k \cup\{\infty\}$. Let $x, y, z \in \mathbb{P}^{1}(k)$ be distinct points. Show that there exists a unique automorphism f of \mathbb{P}_{k}^{1} such that f is of the form f_{A} and such that

$$
f(0)=x, \quad f(1)=y, \quad f(\infty)=z
$$

