Algebraic Geometry I
WS 2022/23

Prof. Dr. Ulrich Görtz
Dr. Heer Zhao

Problem sheet 1

Due date: Oct. 18, 2022.

Problem 1

A non-empty topological space X is called irreducible, if it is not equal to the union of two proper closed subsets.
(1) Determine all topological spaces which are Hausdorff and irreducible. (Recall that a topological space X is called Hausdorff, if for any two points $u, v \in X, u \neq v$, there exist disjoint open subsets $U, V \subseteq X$ with $u \in U, v \in V$.
(2) Let X be a non-empty topological space. Prove that the following properties are equivalent:
(i) The space X is irreducible.
(ii) Every non-empty open subset $U \subseteq X$ is dense in X (i.e., the smallest closed subset of X containing U is X).
(iii) Every non-empty open subset $U \subseteq X$ is connected. (A topological space is called connected, if it is non-empty and cannot be written as the union of two disjoint proper closed subsets.)
(iv) Any two non-empty open subsets of X have non-empty intersection.

Problem 2

Let k be an infinite field.
(1) Let $n \geqslant 1$ and let $f \in k\left[T_{1}, \ldots, T_{n}\right]$ be a polynomial such that $f\left(t_{1}, \ldots, t_{n}\right)=0$ for all $t_{1}, \ldots, t_{n} \in k$. Prove that $f=0$. Hint. You can use induction on n.
(2) Prove that k^{n} (with the Zariski topology) is irreducible. Hint. First show that if $Z \subsetneq k^{n}$ is a proper closed subset, then there exists $f \in k\left[T_{1}, \ldots, T_{n}\right]$ such that $Z \subseteq V(f) \subsetneq k^{n}$.

Problem 3

Let k be a field, let $n, m \geqslant 0$, and let $f_{1}, \ldots, f_{n} \in k\left[T_{1}, \ldots, T_{m}\right]$ be polynomials. We consider k^{m} and k^{n} as topological spaces wit respect to the Zariski topology. Prove that the map

$$
F: k^{m} \longrightarrow k^{n}, \quad\left(t_{1}, \ldots, t_{m}\right) \mapsto\left(f_{1}\left(t_{1}, \ldots, t_{m}\right), \ldots, f_{n}\left(t_{1}, \ldots, t_{m}\right)\right),
$$

is continuous, i.e., for every closed subset $Z \subseteq k^{n}$, the inverse image $F^{-1}(Z)$ is closed.

Problem 4

Let k be an algebraically closed field, and let $d \geqslant 1$. We identify the set of all monic polynomials $f(X)=X^{d}+t_{d-1} X^{d-1}+\cdots+t_{0}$ of degree d with k^{d} by mapping f to $\left(t_{0}, \ldots, t_{d-1}\right)$.
Let $d=2$. Prove that the subset of k^{d} corresponding to those polynomials which have a multiple zero is of the form $V(D)$ for a polynomial $D \in k\left[T_{0}, \ldots, T_{d-1}\right]$.

Remark. The same result holds for all $d \geqslant 1$, but is more difficult to prove for $d>2$. One way to do it is roughly as follows: View $f=$ $X^{d}+t_{d-1} X^{d-1}+\cdots+t_{0}$ as a polynomial with coefficients in the field $K=k\left(t_{0}, \ldots, t_{d-1}\right)$ of rational functions in d variables over k. Let L be the splitting field of f, a Galois extension of K. Let α_{i} be the zeros of f in L, and let $D=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$. Then use Galois theory to show that $D \in K$, and use that $k\left[t_{0}, \ldots, t_{d-1}\right]$ is integrally closed to conclude that $D \in k\left[t_{0}, \ldots, t_{d-1}\right]$. Alternatively, use the main theorem on elementary polynomials.

