Problem sheet 5

Due date: Nov. 13, 2018.

Problem 17

- (1) Let $\psi: A \to B$ be an injective ring homomorphism between reduced rings. Show that every minimal prime ideal of A is in the image of ${}^{a}\psi$. Give an example where ${}^{a}\psi$ is not surjective.
- (2) Let $\varphi \colon A \to B$ be a ring homomorphism, and let $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ be the map attached to φ . Assume that f is bijective and that f reflects specialization, i.e., for $x, x' \in \operatorname{Spec} B$ we have $f(x') \in \overline{\{f(x)\}}$ if and only if $x' \in \overline{\{x\}}$. Show that f is a homeomorphism.

Hint. In (2), we need to show that f is closed. Let $\mathfrak{b} \subset B$ be a radical ideal. Apply (1) to the ring homomorphism $A/\varphi^{-1}(\mathfrak{b}) \to B/\mathfrak{b}$ induced by φ and then use that f reflects specialization to show that $f(V(\mathfrak{b})) = V(\varphi^{-1}(\mathfrak{b}))$

Problem 18

Give an example of a continuous map $f: X \to Y$ between topological spaces X, Y which is bijective and compatible with specialization (i.e., for $x, x' \in X$ we have $x' \in \overline{\{x\}}$, if and only if $f(x') \in \overline{\{f(x)\}}$) which is not a homeomorphism.

Problem 19

Let X be a topological space and let $(U_i)_i$ be an open covering of X. For all i let \mathscr{F}_i be a sheaf on U_i . Assume that for each pair (i, j) of indices we are given isomorphisms $\varphi_{ij} \colon \mathscr{F}_{j|U_i \cap U_j} \xrightarrow{\sim} \mathscr{F}_{i|U_i \cap U_j}$ satisfying for all i, j, k the "cocycle condition"

$$\varphi_{ik} = \varphi_{ij} \circ \varphi_{jk}$$
 on $U_i \cap U_j \cap U_k$.

Show that there exists a sheaf \mathscr{F} on X and for all i isomorphisms $\psi_i \colon \mathscr{F}_i \xrightarrow{\sim} \mathscr{F}_{|U_i}$ such that $\psi_i \circ \varphi_{ij} = \psi_j$ on $U_i \cap U_j$ for all i, j. Show that \mathscr{F} and the ψ_i are uniquely determined up to unique isomorphism by these conditions.

Remark: We say that the sheaf \mathscr{F} is obtained by gluing the \mathscr{F}_i via the gluing datum φ_{ij} .

Problem 20

Let X be a topological space, let Z be a subset of X (equipped with the subspace topology) and let $\iota: Z \to X$ be the inclusion map. Let \mathscr{F} be a sheaf on Z.

- (1) Let \overline{Z} denote the closure of Z in X, and let $x \in X \setminus \overline{Z}$. Show that the stalk $(\iota_*\mathscr{F})_x$ is a singleton set.
- (2) Let $x \in \mathbb{Z}$. Show that there is a natural isomorphism $(\iota_*\mathscr{F})_x \cong \mathscr{F}_x$.