Problem sheet 3

Due date: Oct. 30, 2018.

Problem 9

Let A be a ring. We call an element $e \in A$ idempotent if $e^2 = e$. Show that the following conditions are equivalent:

- (i) Spec A is not connected.
- (ii) There exists an idempotent element $e \in A$ different from 0 and 1.
- (iii) There exists a ring isomorphism $A \cong A_1 \times A_2$ with non-zero rings A_1, A_2 .

Problem 10

Let X be a topological space, and suppose that $X = \bigcup_{i=1}^{n} Z_i$, where the Z_i , $i = 1, \ldots, n$, are closed irreducible subsets of X such that $Z_i \notin Z_j$ for $i \neq j$. Prove that the Z_i are precisely the irreducible components of X.

Problem 11

Let A be a ring, X = Spec A. Show that every irreducible subset $Y \subseteq X$ contains at most one generic point. Give an example of a ring A and an irreducible subset of Spec A which does not contain a generic point.

Problem 12

Let A be a ring, $f \in A$, M an A-module. Consider the inductive system of A-modules (with index set $\mathbb{Z}_{\geq 0}$)

$$M \to M \to M \to \dots$$

where all transition maps are given by multiplication by f. Show that there exists a natural isomorphism between the colimit $\operatorname{colim}_i M$ and the localization M_f of the *A*-module M with respect to the element f.