Problem sheet 10

Due date: Dec. 18, 2018.

Problem 41

Let R be a ring, $n \geqslant 1$, and let $A=\left(a_{i j}\right)_{i, j} \in G L_{n+1}(R)$ be an invertible $(n+1) \times$ $(n+1)$-matrix with entries in R. Let $A=R\left[X_{0}, \ldots, X_{n}\right]$. Let $Z=V\left(X_{0}, \ldots, X_{n}\right) \subseteq$ $\mathbb{A}_{R}^{n+1}=\operatorname{Spec} A$, and let $U=\mathbb{A}_{R}^{n+1} \backslash Z$, an open subscheme of \mathbb{A}_{R}^{n+1}. Recall the morphism $U \rightarrow \mathbb{P}_{R}^{n}$ of R-schemes. (In coordinates, we think of $\left(x_{0}, \ldots, x_{n}\right) \mapsto$ $\left(x_{0}: \cdots: x_{n}\right)$.)
(1) The ring isomorphism

$$
A \rightarrow A, \quad X_{i} \mapsto \sum_{j} a_{i j} X_{j},
$$

induces an isomorphism $\mathbb{A}_{R}^{n+1} \rightarrow \mathbb{A}_{R}^{n+1}$ of R-schemes.
Show that A restricts to an automorphism f_{A} of U.
(2) Show that there exists a unique automorphism f_{A} of \mathbb{P}_{R}^{n} which fits into a commutative diagram

In this way we obtain a group homomorphism from $G L_{n+1}(R)$ into the group $\operatorname{Aut}_{R}\left(\mathbb{P}_{R}^{n}\right)$ of automorphisms of the R-scheme \mathbb{P}_{R}^{n}.
(3) Now let k be a field. We identify $\mathbb{P}^{1}(k)=D_{+}\left(X_{0}\right)(k) \cup V_{+}\left(X_{0}\right)(k)=k \cup\{\infty\}$. Let $x, y, z \in \mathbb{P}^{1}(k)$ be distinct points. Show that there exists a unique automorphism f of \mathbb{P}_{k}^{1} such that f is of the form f_{A} and such that

$$
f(0)=x, \quad f(1)=y, \quad f(\infty)=z .
$$

Problem 42

Let k be an algebraically closed field of characteristic $\neq 2$. Let $f \in k\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous of degree $2, f \neq 0$. We call $V_{+}(f) \subseteq \mathbb{P}_{k}^{n}$ a quadric. Which of the following quadrics in \mathbb{P}_{k}^{2} are isomorphic as k-schemes?

$$
V_{+}\left(X_{0}^{2}+X_{1}^{2}\right), \quad V_{+}\left(X_{0}^{2}+X_{1}^{2}+X_{2}^{2}\right), \quad V_{+}\left(X_{0} X_{2}-X_{1}^{2}\right)
$$

Show that $V_{+}\left(X_{0} X_{2}-X_{1}^{2}\right) \cong \mathbb{P}_{k}^{1}$.

Problem 43

Let X be a scheme, $x, y \in X, x \neq y$. Show that there exists an open subset $U \subset X$ such that U contains exactly one of x, y.

Hint. First reduce to the case of an affine scheme.

Problem 44

Let $f: X \rightarrow Y$ be a morphism of schemes. Let $V=\bigcup_{i} V_{i}$ be a cover by affine open subschemes such that for all $i, f^{-1}\left(V_{i}\right)$ is quasi-compact. Show that f is a quasi-compact morphism, i.e., $f^{-1}(V)$ is quasi-compact for every quasi-compact open $V \subseteq Y$.

